KNIME 学习、下载

软件下载链接:

http://www.knime.org/node/81

开源社区:http://www.oschina.net/p/knime

                    http://www.oschina.net/question/12_14026

学习:

http://blog.csdn.net/kobayasi/article/details/5388235


最近学习了下KNIME,感觉还真不错。虽然知道这个软件很久了,但直到现在才发现他的能耐,惭愧啊。鉴于网上关于这个软件的学习资源相当的少,我把自己学习使用的心得整理一下,放在这里给大家参考,也算是推动下KNIME这个优秀开源软件在中国的传播吧。

 

手头并没有笔记资料,只是把自己想到的回忆到的有空就加进来而已。。。也没时间专门写,一点一点慢慢来吧。

 

工作中同事经常有一些数据需要分析,比如两个月数据对比,找出新增项目等。我之前都是用Access数据库来做,但我发现每次都是在重复一样的操作,而且更要命的是我必须自己做,或则教会同事使用Access(不是搞计算机行业的,这个比较有难度)。于是我想找一些简单的方法。开始我想通过编程的手段来实现,这确实是一条可行之路,但很快我发现,如果一种分析方式就编一个小程序,那也是相当消耗时间的事情。。。

我无法预知同事们的需求,如果他们提出一个要求,我告诉他们请等我花几天时间写好程序(本人非专业人士,编程水平有限),那未免有些太夸张了。就是在这样的背景下,KNIME满足了我的需求。

 

通过KNIME,可以简单的设置数据源,用名为NODE的节点来对数据进行处理,直到最后获取你所需要的结果。举个简单的例子:

 

数据源(Access数据库文件)-过滤掉不使用的列-过滤掉不符合条件的行-修改列名-按照指定列排序-导出结果到CVS文件。

 

这个过程完全是图形化的,你要做的是把用到的节点一个一个拖到合适的位置,然后用鼠标把他们连接起来,最后从头到尾逐个设置好,然后便可以点击执行了,执行过程就像红绿灯,红灯表示节点有问题,你需要查看Log窗口了解问题,黄灯表示等待执行状态,绿灯表示执行正常,偶尔有个叹号则表示有需要提醒你注意的地方,比如说按照现有设置会覆盖原有文件等等。

 

Database Reader

Database Reader 用于从数据库读取数据,是工作流的源头,该节点后面可以连接各种数据处理节点。

默认使用JDBC-ODBC桥来读取数据库文件,你也可以自己加载其它的JDBC驱动。

使用方法和一般JAVA使用JDBC差不多。以ACCESS为例:

Database Driver: 默认值

Database URL:jdbc:odbc:Driver={MicroSoft Access Driver (*.mdb)};DBQ=C:/TEST.mdb

username:空

password:空

SQL Statement:SELECT * FROM test

 

我的数据库文件是TEST.mdb,表是test

 

输完后点击OK,如果设置正确图标会亮黄灯,然后就可以右键Execute,执行完再右键Data from Database查看结果。

 

如果访问Excel,那么需要修改的设置为:

Database URL:jdbc:odbc:Driver={Driver do Microsoft Excel (*.xls)};DBQ=C:/TEST.xls

SQL Statement:SELECT * FROM [sheet1$]

注意,[ ] 是必须的。我的数据库文件是TEST.xls,表是Sheet1

 

 

 

 

 


KNIME Node 用途

IO

Database

Data Manipulation

  Column

      One2Many 把选定列的所有可能值转换成以值命名的新列。如原来“年龄列”有10岁,11岁,那么转换后就增加了“10岁”列和“11岁”列。

 

             姓名  年龄

               A     10

               B     11

 

             姓名  年龄  10  11

               A     10     1    0

               B     11     0    1


knime是一款功能强大的开源数据分析和机器学习工具,提供了许多用于机器学习的节点。这些节点可以帮助用户处理数据集、构建和训练机器学习模型,并进行模型评估和预测。 在knime中,可以通过“数据准备”节点进行数据集的加载,包括从文件、数据库或其他来源导入数据。用户可以使用数据处理节点对数据集进行预处理和清洗,例如去除缺失值、重复值,以及进行特征工程,如特征提取、变量选择和变量转换。 knime还提供了多个机器学习算法节点,包括决策树、逻辑回归、支持向量机、朴素贝叶斯等。用户可以使用这些节点训练模型,并通过交叉验证和网格搜索等技术优化模型的性能。此外,knime还支持集成学习算法和深度学习算法,如随机森林、梯度提升、神经网络等。 在模型训练完成后,knime提供了多个评估节点来评估模型的性能,例如混淆矩阵、准确率、召回率、F1分数等。用户还可以使用交互式图表节点可视化评估结果,以便更好地了解模型的表现。 一旦模型评估完成,用户可以使用预测节点对新数据进行预测。此外,knime还提供了导出模型的节点,允许用户将训练好的模型转化为可部署的形式,以便在其他环境中进行实际应用。 总之,knime的机器学习节点提供了丰富的工具和功能,帮助用户在数据分析和机器学习领域进行快速而高效的工作。用户可以通过节点的灵活组合,自由构建适用于自己需求的机器学习流程,并在实际应用中取得良好的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_小海_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值