GAN
文章平均质量分 53
chen5561
这个作者很懒,什么都没留下…
展开
-
GAN(4)李宏毅——理论
目录 1:找出图像的分布规律——生成器1.1:之前的方法——最大似然估计产生的图片非常非常模糊——这是由于高斯分布本身的表达能力有限1.2:genorator网络,看做是概率分布——表达能力更高,判别器,看做KL优化1:找出图像的分布规律——生成器 1.1:之前的方法——最大似然估计用Pdata的取样,调整PG的参数,让PG接近Pdata。只考虑P(D ...原创 2018-09-23 15:04:56 · 832 阅读 · 0 评论 -
李宏毅(6)——improve GAN的技巧(wGAN)
目录 1:判别器执行JS时存在的问题1.1:LSGAN,把二分类问题变成线性回归问题1.2:WGAN(推土机距离)1.3:Spectrum Norm判别器所有区域的梯度都<11.4:EBGAN用真实图片预训练编解码器1.5:LSGAN更精细地评判生成样本1:判别器执行JS时存在的问题1,图像被认为是低维数据在高维空间的折叠,两个图像之间的重叠很少2,就...原创 2018-09-27 11:46:17 · 1086 阅读 · 0 评论 -
GAN李宏毅(1)
目录GAN的种种变形的收集课程内容1基本概念1.1核心问题1.2算法1.3结果——遍历的创造力2GAN 是一种结构学习2.1分类、回归、结构学习2.2 结构学习的难度2.3传统解决这个问题的方法 3generator自己学会怎么样3.1用encode-decode网络的decode代作为生成器3.2这种方式的问题3.3VAE解决这个问题3...原创 2018-09-22 17:54:59 · 1857 阅读 · 0 评论 -
GAN李宏毅(2)——可控的GAN
目录1 conditional GAN的判别器增加了一个判断条件,那么生成器就有了反应1.1两种判别网络结构1.2 stack GAN_由易到难(看看人家怎么解释) 1.3 image image(核心仍然是判别器)1.4 噪音处理,预测下一帧我们不希望网络输出多张image的平均——这个问题被gan的判别器解决了1 conditional GAN的判别器增加了一个...原创 2018-09-22 21:44:13 · 872 阅读 · 0 评论 -
GAN李宏毅(3)——无监督conditional GAN
目录问题——如果判别器不仔细设计,而生成器又比较深的话,会导致生成图像与原始图像差别很大方法1——加一个训练好的分类器方法2——circle GAN两个生成器,两个判别器,一起训练存在的问题扩展——starGAN方法3——统一空间为了减少模糊,增加判别能力,我们引入判断全局信息的判别器——VAEGAN由于是分开训练的,并没有映射到相同空间方法1c...原创 2018-09-22 23:27:21 · 1408 阅读 · 0 评论 -
李宏毅(7)——GAN4项内容
目录 1: 特征提取1.1:infoGAN1.2:VAE-GAN1.3:BiGAN1.4:Triple GAN1.5:测试数据与训练数据的domain的匹配用于混合特征的分离1: 特征提取1.1:infoGAN实际上laten space与图像的映射是很乱的,所以很难确定某个laten space中的维度具体的意义加一个classifier,只有...原创 2018-09-28 22:27:54 · 276 阅读 · 0 评论 -
GAN(8)-智能ps
反推图片的code产生新的图片找到一个z满足三个条件(用梯度下降解决)原创 2018-09-30 10:43:30 · 403 阅读 · 0 评论 -
GAN(9)——sequence generation
seq2seq的模型训练传统方法的问题——RL中不存在标准回答,用Reward标识每个样本的权重,迭代更新两者其实不是矛盾的,maximum likelihold 作为判别器,RL本身作为生成器? on policy就是训练学生 off policy就是训练老师强化学习的一大难点就是:需要大量的对当前训练样本的reward的计算比如...原创 2018-09-30 20:51:35 · 801 阅读 · 0 评论