矩形覆盖——斐波那契数列

[编程题]矩形覆盖

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?


解析:
依旧是斐波那契数列
2*n的大矩形,和n个2*1的小矩形
其中target*2为大矩阵的大小
有以下几种情形:
1⃣️target <= 0 大矩形为<= 2*0,直接return 1;
2⃣️target = 1大矩形为2*1,只有一种摆放方法,return1;
3⃣️target = 2 大矩形为2*2,有两种摆放方法,return2;
4⃣️target = n 分为两步考虑:
        第一次摆放一块 2*1 的小矩阵,则摆放方法总共为f(target - 1)
             
             

第一次摆放一块1*2的小矩阵,则摆放方法总共为f(target-2)
因为,摆放了一块1*2的小矩阵(用√√表示),对应下方的1*2(用××表示)摆放方法就确定了,所以为f(targte-2)
           
× ×            

参考代码:

# -*- coding:utf-8 -*-
class Solution:
    def rectCover(self, number):
        # write code here
        cout = [0,1,2]
        for x in range(3,number+1):
            cout += [cout[x-1] + cout[x-2]]
        return cout[number]









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值