题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1024
最大m段不相交字段和的问题,设b[i][j]表示数组a的前j项中i个字段和的最大值,且第i个子段包含a[j]。则所求最优值明显为max(b[m][j]) m=<j<=n。
b[i][j]=max(b[i][j-1]+a[j], max(b[i-1][t])+a[j]) i=<j<=n 1=<i<=m。
i-1=<t<j
其中,b[i][j-1]+a[j]项表示第i个子段包含a[j-1],而max(b[i-1][t])+a[j]第i个子段仅含a[j]。我们可以发现这样效率低下,主要是由max(b[i-1][t])+a[j]中的的这个循环造成,这样造成了很多余的计算。要是我们b[i][j]用来存储前j个数划为i段得到的最大和,但不一定包括a[j]的话就会减少很多的计算,只是在计算时记录下以前已经计算好的值,此时b[i][j]=max(b[i][j-1]+a[j], b[i-1][j]+a[j]),可以发现b[i][j]仅与两个数值相关,我们就可以利用滚动数组来节省大量的存储空间了。程序中pre代表b[i-1][j],now代表b[i][j-1]
#include <iostream>
#include <string>
#define MAX 1000005
using namespace std;
int num[MAX], pre[MAX], now[MAX], max_NUM;
int main()
{
int n, m;
while(scanf("%d%d", &m, &n) != EOF)
{
memset(pre, 0, sizeof(pre));
memset(now, 0, sizeof(now));
for(int i = 1; i <= n; i++)
{
scanf("%d", &num[i]);
}
for(int i = 1; i <= m; i++)
{
max_NUM = -1 * (INT_MAX);
for(int j = i; j <= n; j++)
{
now[j] = max(now[j - 1] + num[j], pre[j - 1] + num[j]);
pre[j - 1] = max_NUM;
if(now[j] > max_NUM)
{
max_NUM = now[j];
}
}
}
printf("%d\n", max_NUM);
}
return 0;
}