1. HA概述
-
所谓HA(High Available),即高可用(7*24小时不中断服务)。
-
实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
-
Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
-
NameNode主要在以下两个方面影响HDFS集群:
NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启
NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用
HDFS HA功能通过配置Active/Standby两个NameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。
2. HDFS-HA工作机制
通过双 NameNode 消除单点故障
2.1 HDFS-HA工作要点
-
元数据管理方式需要改变
内存中各自保存一份元数据;
Edits日志只有Active状态的NameNode节点可以做写操作;
两个NameNode都可以读取Edits;
共享的Edits放在一个共享存储中管理(qjournal和NFS两个主流实现);
-
需要一个状态管理功能模块
实现了一个 zkfailover ,常驻在每一个 namenode 所在的节点,每一个 zkfailover 负责监控自己所在 NameNode 节点,利用 zookeeper 进行状态标识,当需要进行状态切换时,由 zkfailover 来负责切换,切换时需要防止 brain split 现象的发生。
-
必须保证两个NameNode之间能够ssh无密码登录
-
隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务
2.2 HDFS-HA自动故障转移工作机制
前面学习了使用命令 hdfs haadmin -failover
手动进行故障转移,在该模式下,即使现役 NameNode 已经失效,系统也不会自动从现役 NameNode 转移到待机 NameNode,下面学习如何配置部署 HA 自动进行故障转移。自动故障转移为 HDFS 部署增加了两个新组件:ZooKeeper 和 ZKFailoverController(ZKFC)进程,如图所示。ZooKeeper 是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。
HA 的自动故障转移依赖于 ZooKeeper 的以下功能:
- 故障检测:集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。
- 现役NameNode选择:ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。
ZKFC 是自动故障转移中的另一个新组件,是 ZooKeeper 的客户端,也监视和管理 NameNode 的状态。每个运行 NameNode 的主机也运行了一个 ZKFC 进程,ZKFC负责:
-
健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。
-
ZooKeeper会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。
-
基于ZooKeeper的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为Active。故障转移进程与前面描述的手动故障转移相似,首先如果必要保护之前的现役NameNode,然后本地NameNode转换为Active状态。
3. HDFS-HA 集群配置
3.1 环境准备
-
修改IP
-
修改主机名及主机名和IP地址的映射
-
关闭防火墙
-
ssh免密登录
-
安装JDK,配置环境变量等
3.2 规划集群
hadoop102 | hadoop103 | hadoop104 |
---|---|---|
NameNode | NameNode | |
JournalNode | JournalNode | JournalNode |
DataNode | DataNode | DataNode |
ZK | ZK | ZK |
ResourceManager | ||
NodeManager | NodeManager | NodeManager |
3.3 配置 Zookeeper 集群
3.3.1 集群规划
在hadoop102、hadoop103和hadoop104三个节点上部署Zookeeper。
3.3.2 解压安装
-
解压Zookeeper安装包到/opt/module/目录下
$ tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/
-
在
/opt/module/zookeeper-3.4.10/
这个目录下创建 zkDatamkdir -p zkData
-
重命名
/opt/module/zookeeper-3.4.10/conf
这个目录下的zoo_sample.cfg
为zoo.cfg
mv zoo_sample.cfg zoo.cfg
3.3.3 配置 zoo.cfg
文件
-
具体配置
dataDir=/opt/module/zookeeper-3.4.10/zkData
增加如下配置
#######################cluster########################## server.2=hadoop102:2888:3888 server.3=hadoop103:2888:3888 server.4=hadoop104:2888:3888
-
配置参数解读
-
Server.A=B:C:D。
-
A 是一个数字,表示这个是第几号服务器;
-
B 是这个服务器的IP地址;
-
C 是这个服务器与集群中的Leader服务器交换信息的端口;
-
D 是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
-
3.3.4 集群操作
-
创建 myid 文件
$ vim myid 2
-
拷贝配置好的zookeeper到其他机器上
$ scp -r zookeeper-3.4.10/ dwjf321@hadoop103:/opt/app/ $ scp -r zookeeper-3.4.10/ dwjf321@hadoop104:/opt/app/
-
分别启动 Zookeeper
[dwjf321@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh start [dwjf321@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh start [dwjf321@hadoop104 zookeeper-3.4.10]# bin/zkServer.sh start
-
查看状态
[dwjf321@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh status JMX enabled by default Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg Mode: follower [dwjf321@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh status JMX enabled by default Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg Mode: leader [dwjf321@hadoop104 zookeeper-3.4.5]# bin/zkServer.sh status JMX enabled by default Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg Mode: follower
3.4 配置HDFS-HA集群
-
官方地址:http://hadoop.apache.org/
-
在opt目录下创建一个ha文件夹
$ mkdir ha
-
将/opt/app/下的 hadoop-2.7.2拷贝到/opt/ha目录下
$ cp -r hadoop-2.7.2/ /opt/ha/
-
配置hadoop-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144
-
配置core-site.xml
<configuration> <!-- 把两个NameNode)的地址组装成一个集群mycluster --> <property> <name>fs.defaultFS</name> <value>hdfs://mycluster</value> </property> <!-- 指定hadoop运行时产生文件的存储目录 --> <property> <name>hadoop.tmp.dir</name> <value>/opt/ha/hadoop-2.7.2/data/tmp</value> </property> </configuration>
-
配置hdfs-site.xml
<configuration> <!-- 完全分布式集群名称 --> <property> <name>dfs.nameservices</name> <value>mycluster</value> </property> <!-- 集群中NameNode节点都有哪些 --> <property> <name>dfs.ha.namenodes.mycluster</name> <value>nn1,nn2</value> </property> <!-- nn1的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.mycluster.nn1</name> <value>hadoop102:9000</value> </property> <!-- nn2的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.mycluster.nn2</name> <value>hadoop103:9000</value> </property> <!-- nn1的http通信地址 --> <property> <name>dfs.namenode.http-address.mycluster.nn1</name> <value>hadoop102:50070</value> </property> <!-- nn2的http通信地址 --> <property> <name>dfs.namenode.http-address.mycluster.nn2</name> <value>hadoop103:50070</value> </property> <!-- 指定NameNode元数据在JournalNode上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/mycluster</value> </property> <!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 --> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property> <!-- 使用隔离机制时需要ssh无秘钥登录--> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/home/atguigu/.ssh/id_rsa</value> </property> <!-- 声明journalnode服务器存储目录--> <property> <name>dfs.journalnode.edits.dir</name> <value>/opt/ha/hadoop-2.7.2/data/jn</value> </property> <!-- 关闭权限检查--> <property> <name>dfs.permissions.enable</name> <value>false</value> </property> <!-- 访问代理类:client,mycluster,active配置失败自动切换实现方式--> <property> <name>dfs.client.failover.proxy.provider.mycluster</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> </configuration>
-
拷贝配置好的 hadoop 环境到其他节点
3.5 启动 HDFS-HA 集群
-
在各个JournalNode节点上,输入以下命令启动journalnode服务
$ sbin/hadoop-daemon.sh start journalnode
-
在[nn1]上,对其进行格式化,并启动
$ bin/hdfs namenode -format $ sbin/hadoop-daemon.sh start namenode
-
在[nn2]上,同步nn1的元数据信息
$ bin/hdfs namenode -bootstrapStandby
-
启动[nn2]
$ sbin/hadoop-daemon.sh start namenode
-
查看web页面显示,如图所示
hadoop102 (standby) hadoop103 (standby) -
在[nn1]上,启动所有datanode
$ sbin/hadoop-daemons.sh start datanode
-
将[nn1]切换为Active
$ bin/hdfs haadmin -transitionToActive nn1
-
查看是否Active
$ bin/hdfs haadmin -getServiceState nn1
3.6 配置 HDFS-HA 自动故障转移
3.6.1 具体配置
-
在 hdfs-site.xml 中增加
<property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property>
-
在 core-site.xml 文件中增加
<property> <name>ha.zookeeper.quorum</name> <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value> </property>
3.6.2 启动
-
关闭所有 HDFS 服务
$ sbin/stop-dfs.sh
-
启动 Zookeeper 集群
$ bin/zkServer.sh start
-
初始化 HA 在 Zookeeper 中状态
$ bin/hdfs zkfc -formatZK
-
启动 HDFS 服务
$ sbin/start-dfs.sh
-
在各个 NameNode 节点上启动 DFSZK Failover Controller,先在哪台机器启动,哪个机器的 NameNode 就是 Active NameNode
$ sbin/hadoop-daemin.sh start zkfc
3.6.3 验证
-
将 Active NameNode 进程 kill
$ kill -9 namenode的进程id
-
将 Active NameNode 机器断开网络
$ service network stop
4. YARN-HA 配置
4.1 YARN-HA 工作机制
-
官方文档:
http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
-
YARN-HA工作机制
YARN-HA 工作机制
4.2 配置 YARN-HA 集群
4.2.1 环境准备
-
修改IP
-
修改主机名及主机名和IP地址的映射
-
关闭防火墙
-
ssh免密登录
-
安装JDK,配置环境变量等
-
配置Zookeeper集群
4.2.2 规划集群
hadoop102 | hadoop103 | hadoop104 |
---|---|---|
NameNode | NameNode | |
JournalNode | JournalNode | JournalNode |
DataNode | DataNode | DataNode |
ZK | ZK | ZK |
ResourceManager | ResourceManager | |
NodeManager | NodeManager | NodeManager |
4.2.3 具体配置
-
yarn-site.xml
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <!--启用resourcemanager ha--> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!--声明两台resourcemanager的地址--> <property> <name>yarn.resourcemanager.cluster-id</name> <value>cluster-yarn1</value> </property> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>hadoop102</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>hadoop103</value> </property> <!--指定zookeeper集群的地址--> <property> <name>yarn.resourcemanager.zk-address</name> <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value> </property> <!--启用自动恢复--> <property> <name>yarn.resourcemanager.recovery.enabled</name> <value>true</value> </property> <!--指定resourcemanager的状态信息存储在zookeeper集群--> <property> <name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value> </property> </configuration>
-
同步更新其他节点的配置信息
4.2.4 启动 HDFS
-
在各个
JournalNode
节点上,输入以下命令启动journalnode
服务$ sbin/hadoop-daemon.sh start journalnode
-
在 【nn1]】上,对其进行格式化,并启动
$ bin/hdfs namenode -format $ sbin/hadoop-daemon.sh start namenode
-
在 【nn2】上,同步nn1的元数据信息
$ bin/hdfs namenode -bootstrapStandby
-
启动 【nn2】
$ sbin/hadoop-daemon.sh start namenode
-
启动所有 DataNode
$ sbin/hadoop-daemons.sh start datanode
-
将【nn1】切换为 Active
$ bin/hdfs haadmin -transitionToActive nn1
4.2.5 启动 YARN
-
在hadoop102中执行
$ sbin/start-yarn.sh
-
在hadoop103中执行
$ sbin/yarn-daemon.sh start resourcemanager
-
查看服务状态
$ bin/yarn rmadmin -getServiceState rm1
YARN 的服务状态