CV学习笔记
dwqy11
时间会看见。
展开
-
有监督、半监督、无监督、弱监督、自监督的定义和区别
有监督、半监督、无监督、弱监督、自监督的定义和区别原创 2021-02-07 10:41:42 · 40913 阅读 · 4 评论 -
【论文阅读笔记】Self-training with Noisy Student improves ImageNet classification
Motivation利用较少的标记数据来进一步利用大规模的无标记数据进行半监督/自监督学习用teacher模型生成伪标签训练studen模型,并通过加入噪声使student模型由于teacher模型,迭代此过程以得到更优的模型原理基于self-training的teacher-student框架用标记数据训练teacher模型用teacher模型对大规模的无标记数据生成伪标签用labelled data和具有伪标签的unlabelled data共同训练student模型新的stu原创 2020-10-21 13:43:15 · 719 阅读 · 0 评论 -
【论文阅读笔记】NIMA: Neural Image Assessment
原理分类器输出各个分数的概率值,与GT的打分计算lossloss采用EMDloss这样意味着不是简单的二分类,也不是对得分进行回归,而是让模型去生成对输入图片的得分的分布,并且假设是高斯分布,这样就可以得到均值和方差,用均值作为输入图片美观度的得分模型结构各种baseline CNN + FC + softmaxFC的输出维度由数据集打分的范围决定,例如1-10分则为10个分类重点理解文章的重点主要在于采用了这个EMD函数,之前没见过,需要理解一下CDF是累计分布概率函数,所以能够体原创 2020-10-09 15:58:20 · 736 阅读 · 1 评论