视频预测
文章平均质量分 85
dwqy11
时间会看见。
展开
-
通过cross convolution networks预测视频
cross convolution networks:cross convolution layer + network 主要目的在于用cross convolution layer能够分层表达图像中的动作。 主要思路是,将核解码器学习到的核分别应用到由图像编码器学习到的特征图中。 cross convolution layer的提出基础: Motion can ofte原创 2017-10-27 21:09:06 · 664 阅读 · 0 评论 -
video pixel networks阅读笔记
一、模型结构 本文定义了一个由VPN(video pixel networks)来执行的概率模型。 表示第t帧(i, j)位置上c颜色通道({R, G, B})的像素值。通过链式法则将视频似然函数p(x)因式分解,表示为一个条件概率的乘积,在没有独立性假设时也可以用一种容易处理的方式进行建模。 确定因子分析中的变量顺序遵从两个准则。第一个是根据数据的特性和对数据的使用来确定;预测视原创 2017-10-27 21:14:17 · 1416 阅读 · 0 评论 -
一个生成自然场景视频模型的基线
Video(Language)Modeling: A Baseline for Generative Models of Natural Videos从自然语言处理的经典方法中获得启示,例如 n-grams, neural net language models (Bengio et al., 2003) 和recurrent neural networks(Mikolov et al., 201...原创 2018-02-27 10:18:56 · 399 阅读 · 0 评论