如何用 TensorFlow 实现 GAN

以下是使用TensorFlow实现GAN的代码示例: ```python import tensorflow as tf from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropout, LeakyReLU from tensorflow.keras.models import Sequential, Model from tensorflow.keras.optimizers import Adam import numpy as np import matplotlib.pyplot as plt # 定义生成器模型 def build_generator(latent_dim): model = Sequential() # 添加一个全连接层 model.add(Dense(128 * 7 * 7, activation="relu", input_dim=latent_dim)) model.add(Reshape((7, 7, 128))) # 添加反卷积层 model.add(Conv2DTranspose(128, kernel_size=3, strides=2, padding="same")) model.add(BatchNormalization()) model.add(LeakyReLU(alpha=0.01)) model.add(Conv2DTranspose(64, kernel_size=3, strides=1, padding="same")) model.add(BatchNormalization()) model.add(LeakyReLU(alpha=0.01)) model.add(Conv2DTranspose(1, kernel_size=3, strides=2, padding="same", activation="tanh")) # 输出生成器模型 noise = Input(shape=(latent_dim,)) img = model(noise) return Model(noise, img) # 定义判别器模型 def build_discriminator(img_shape): model = Sequential() # 添加卷积层 model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=img_shape, padding="same")) model.add(LeakyReLU(alpha=0.01)) model.add(Conv2D(64, kernel_size=3, strides=2, padding="same")) model.add(BatchNormalization()) model.add(LeakyReLU(alpha=0.01)) model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) model.add(BatchNormalization()) model.add(LeakyReLU(alpha=0.01)) model.add(Flatten()) model.add(Dense(1, activation="sigmoid")) # 输出判别器模型 img = Input(shape=img_shape) validity = model(img) return Model(img, validity) # 定义训练过程 def train(generator, discriminator, combined, epochs, batch_size, save_interval): # 加载MNIST数据集 (X_train, _), (_, _) = mnist.load_data() # 将像素值缩放到[-1, 1]之间 X_train = X_train / 127.5 - 1. X_train = np.expand_dims(X_train, axis=3) # 真实样本的标签为1,生成样本的标签为0 real = np.ones((batch_size, 1)) fake = np.zeros((batch_size, 1)) for epoch in range(epochs): # --------------------- # 训练判别器 # --------------------- # 随机选择一个批次的真实样本 idx = np.random.randint(0, X_train.shape[0], batch_size) imgs = X_train[idx] # 生成一批噪声作为输入 noise = np.random.normal(0, 1, (batch_size, latent_dim)) # 使用生成器生成一批假样本 gen_imgs = generator.predict(noise) # 训练判别器 d_loss_real = discriminator.train_on_batch(imgs, real) d_loss_fake = discriminator.train_on_batch(gen_imgs, fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------- # 训练生成器 # --------------------- # 生成一批噪声作为输入 noise = np.random.normal(0, 1, (batch_size, latent_dim)) # 训练生成器 g_loss = combined.train_on_batch(noise, real) # 打印损失 print("%d [D loss: %f] [G loss: %f]" % (epoch, d_loss[0], g_loss)) # 每隔save_interval个epoch保存一次生成器的输出 if epoch % save_interval == 0: save_imgs(generator, epoch) # 保存生成器的输出 def save_imgs(generator, epoch): r, c = 5, 5 noise = np.random.normal(0, 1, (r * c, latent_dim)) gen_imgs = generator.predict(noise) # 将像素值缩放到[0, 1]之间 gen_imgs = 0.5 * gen_imgs + 0.5 fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray') axs[i,j].axis('off') cnt += 1 fig.savefig("gan_mnist_%d.png" % epoch) plt.close() # 设置超参数 latent_dim = 100 img_shape = (28, 28, 1) optimizer = Adam(0.0002, 0.5) # 构建判别器 discriminator = build_discriminator(img_shape) discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # 构建生成器 generator = build_generator(latent_dim) # 构建组合模型 z = Input(shape=(latent_dim,)) img = generator(z) validity = discriminator(img) combined = Model(z, validity) combined.compile(loss='binary_crossentropy', optimizer=optimizer) # 训练模型 epochs = 20000 batch_size = 128 save_interval = 1000 train(generator, discriminator, combined, epochs, batch_size, save_interval) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值