描述
在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.
输出格式:
输出共2行,第1行为最小得分,第2行为最大得分.
输入样例:
4
4 5 9 4
输出样例:
43
54
题解:很经典的问题了,然而我还是只会记忆化搜索。。。 记得要有前缀和优化。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define INF 1e9
using namespace std;
int s[1004],a[1004],n,f[1004][1004];
int ld;
int dp1(int i,int j){
if(i == j)f[i][j]=0;
if(f[i][j]<INF) return f[i][j];
for(int k=i;k<j;k++) f[i][j]=min(f[i][j],dp1(i,k)+dp1(k+1,j));
return f[i][j]+=s[j]-s[i-1];
}
int dp2(int i,int j){
if(i == j)f[i][j]=0;
if(f[i][j]>=0) return f[i][j];
for(int k=i;k<j;k++) f[i][j]=max(f[i][j],dp2(i,k)+dp2(k+1,j));
return f[i][j]+=s[j]-s[i-1];
}
int main(){
scanf("%d",&n);
ld=(n<<1)-1;
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
a[i]=a[i+n]=x;
}
s[0]=0;
for(int i=1;i<=ld;i++)s[i]=s[i-1]+a[i];
int ans = INF;
for(int i=1;i<=1000;i++)
for(int j=1;j<=1000;j++)f[i][j]=INF;
dp1(1,ld);
for(int i=1;i<=n;i++) ans = min(ans , f[i][i+n-1]);
printf("%d\n",ans);
memset(f,-1,sizeof(f));
dp2(1,ld);
for(int i=1;i<=n;i++) ans = max(ans , f[i][i+n-1]);
printf("%d\n",ans);
return 0;
}