题目描述:
7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小(除Q外,以上所有数据皆为正整数)
Input
有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。
Output
仅一行,是一个正整数S(若无解则S = 0)。
Sample Input
100
2
Sample Output
68
题解:
我们首先要枚举最底下的那个圆柱的高和半径,根据题意,这两个值都得>=m,我选择先从半径开始枚举,半径R的最大值为sqrt(n),所对应的高H的最大值为n/(R*R)。
两个剪枝:
①可行性剪枝,判断剩下的几层按照最大选择来放,能不能让总体积大于等于n。
②枚举第一个圆柱的高和半径时,倒着搜。
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define LiangJiaJun main
#define pa pair<int,int>
#define INF 1999122700
using namespace std;
int n,m;
int ans=INF;
int dfs(int x,int r,int h,int s,int v){
if(s>=ans||v>n)return 0;
int test=v,nr=r,nh=h;
for(int i=x;i<=m;i++){
nr--;nh--;
test+=nr*nr*nh;
}
if(test<n)return 0;
if(x>=m){
if(v==n)ans=min(ans,s);
return 0;
}
int sig=min(r-1,(int)sqrt(n-v));
for(int R=sig;R>=m-x;R--){
int lim=min(h-1,(n-v)/(R*R));
for(int H=lim;H>=m-x;H--){
dfs(x+1,R,H,s+2*R*H,v+R*R*H);
}
}
}
int w33ha(){
ans=INF;
int P=(int)sqrt(n);
for(int R=P;R>=m;R--){
int G=n/(R*R);
for(int H=G;H>=m;H--)
dfs(1,R,H,R*R+2*R*H,R*R*H);
}
if(ans!=INF)printf("%d\n",ans);
else puts("0");
return 0;
}
int LiangJiaJun(){
while(scanf("%d%d",&n,&m)!=EOF)w33ha();
return 0;
}