题目描述
一条单向的铁路线上,依次有编号为 1, 2, …, n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点)
例如,下表是 5 趟车次的运行情况。其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求。
现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的级别。
输入输出格式
输入格式:
输入文件为 level.in。
第一行包含 2 个正整数 n, m,用一个空格隔开。
第 i + 1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2 ≤ si ≤ n),表示第 i 趟车次有 si 个停靠站;接下来有 si个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。
输出格式:
输出文件为 level.out。
输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。
输入输出样例
输入样例#1:
9 2
4 1 3 5 6
3 3 5 6
输出样例#1:
2
输入样例#2:
9 3
4 1 3 5 6
3 3 5 6
3 1 5 9
输出样例#2:
3
说明
对于 20%的数据,1 ≤ n, m ≤ 10;
对于 50%的数据,1 ≤ n, m ≤ 100;
对于 100%的数据,1 ≤ n, m ≤ 1000。
题解:
来源是NOIP2013普及组第四题
对于每一趟列车,其走过的路径上所有没有停靠的车站都比有停靠的车站的等级低,那么就可以把这趟车所有经过但是没停靠的站向有停靠的站连一条单向边。然后拓扑排序计算分级的数量。
#include<bits/stdc++.h>
#define LiangJiaJun main
#define ll long long
#define pa pair<int,int>
using namespace std;
struct edge{
int nt,to;
}e[2000004];
int n,m;
int h[1004],ne;
int ru[1004],cnt[1004],p[1004],pt[1004];
bool now[1004];
bool mp[1004][1004];
void add(int u,int v){
e[++ne].to=v;e[ne].nt=h[u];h[u]=ne;
}
queue<int>q;
int w33ha(){
ne=0;
memset(mp,0,sizeof(mp));
memset(ru,0,sizeof(ru));
memset(h,0,sizeof(h));
memset(p,0,sizeof(p));
for(int i=1;i<=m;i++){
int s,x;scanf("%d",&s);
memset(now,0,sizeof(now));
for(int j=1;j<=s;j++){
scanf("%d",&pt[j]);
now[pt[j]]=1;
}
for(int j=pt[1];j<=pt[s];j++){
if(now[j])continue;
for(int k=1;k<=s;k++)mp[j][pt[k]]=1;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mp[i][j]==1){
//cout<<i<<" "<<j<<endl;
add(i,j);
++ru[j];
}
}
}
for(int i=1;i<=n;i++)if(!ru[i])q.push(i);
while(!q.empty()){
int x=q.front();q.pop();
for(int i=h[x];i;i=e[i].nt){
--ru[e[i].to];
if(ru[e[i].to]<=0){
p[e[i].to]=p[x]+1;
q.push(e[i].to);
}
}
}
int ans=0;
for(int i=1;i<=n;i++)ans=max(ans,p[i]);
printf("%d\n",ans+1);
return 0;
}
int LiangJiaJun(){
while(scanf("%d%d",&n,&m)!=EOF)w33ha();
return 0;
}