人品问题(树形dp)
题目描述
网上出现了一种高科技产品——人品测试器。只要你把你的真实姓名输入进去,系统将自动输出你的人品指数。把儿不相信自己的人品为0。经过了许多研究后,把儿得出了一个更为科学的人品计算方法。这种方法的理论依据是一个非常重要的结论:人品具有遗传性。因此,一个人的人品完全由他的祖先决定。把儿提出的人品计算方法相当简单,只需要将测试对象的k个祖先的人品指数(可能为负数)加起来即可。选择哪K个祖先可以由测试者自己决定,但必须要满足这个要求:如果除自己的父母之外的某个祖先被选了,那么他的下一代必需要选(不允许跳过某一代选择更远的祖先,否则将失去遗传的意义)。
非常不幸的是,把儿测试了若干次,他的人品值仍然不能为一个正数。现在把儿需要你帮助他找到选择祖先的最优方案,使得他的人品值最大。
输入
数据的第一行是两个用空格隔开的正整数n和k,其中n代表把儿已知的家谱中共有多少人(包括把儿本身在内),k的意义参见问题描述。
数据的第二行有n-1个用空格隔开的整数(可能为负),这些数的绝对值在2^15以内。其中,第i个数表示编号为i+1的人的人品值。我们规定,编号为1的人是把儿。
接下来n行每行有两个用空格隔开的数,其中第i行的两个数分别表示第i个人的父亲和母亲的编号。如果某个人的父亲或母亲不在这个家谱内,则在表示他的父亲或母亲的编号时用0代替。
输入数据中除把儿以外的所有人都是把儿的祖先,他们都会在输入数据中作为父亲或母亲被描述到。输入数据中每个人都不可能同时作为多个人的父亲或者是母亲。
输出
将把儿能够得到的最大人品值输出
样例输入 Copy
6 3
-2 3 -2 3 -1
2 3
4 5
0 6
0 0
0 0
0 0
样例输出 Copy
4
提示
样例说明
下图显示了输入数据所描述的家谱图。括号里的数表示的是该人的人品值。
4(-2) 5(3) 6(-1)
\ / /
\ / /
2(-2) 3(3)
\ /
\ /
1 <—把儿
显然,选择祖先2、3、5能使把儿的人品值达到最大。这个最大值为4
数据规模
对于50%的数据,n<=10;
对于100%的数据,n<=100。
思路:树形dp。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
#include <stdio.h>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <cctype>
#include <string>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <ctime>
#include <vector>
#include <fstream>
#include <list>
#include <iomanip>
#include <numeric>
using namespace std;
#define rep(i , a , b) for(register int i=(a);i<=(b);i++)
#define per(i , a , b) for(register int i=(a);i>=(b);i--)
#define ms(s) memset(s, 0, sizeof(s))
#define squ(x) (x)*(x)
#define fi first
#define se second
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll , ll> pi;
typedef unordered_map<int,int> un_map;
typedef priority_queue<int> prque;
template<class T>
inline void read (T &x) {
x = 0;
int sign = 1;
char c = getchar ();
while (c < '0' || c > '9') {
if ( c == '-' ) sign = - 1;
c = getchar ();
}
while (c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar ();
}
x = x * sign;
}
const int maxn = 2e5 + 10;
const int inf = 0x3f3f3f3f;
const ll INF = ll(1e18);
const int mod = 998244353;
const double PI = acos(-1);
//#define LOCAL
int n,k;
int fa[111][2];
int a[111];
int dp[111][111];
bool vis[111][111];
int dfs(int x,int cnt) {
if(vis[x][cnt]) return dp[x][cnt];
if(!cnt) return dp[x][cnt]=0;
if(!x) return dp[x][cnt]=-inf;
if(cnt==1) return dp[x][cnt]=a[x];
int ans = -inf;
rep(i,0,cnt-1) {
ans=max(ans,a[x]+dfs(fa[x][0],i)+dfs(fa[x][1],cnt-i-1));
}
vis[x][cnt]=1;
return dp[x][cnt]=ans;
}
int main(int argc, char * argv[])
{
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
read(n);read(k);
rep(i,2,n) {
read(a[i]);
}
rep(i,1,n) {
read(fa[i][0]);read(fa[i][1]);
}
int ans = dfs(1,k+1);
printf("%d\n",ans);
return 0;
}