多项式乘法逆

洛谷 P4238 【模板】多项式乘法逆

给出多项式 f ( x ) f(x) f(x),要你求多项式 g ( x ) g(x) g(x),满足 f ( x ) ⋅ g ( x ) ≡ 1 ( m o d x n ) f(x)\cdot g(x)\equiv1\pmod{x^n} f(x)g(x)1(modxn)。系数对 998244353 998244353 998244353 取模。

分析

首先要明确,多项式对 x n x^n xn 取模代表次数大于等于 n n n 的那些项就不管了。

我们可以采用分治的思想来求多项式乘法逆。

如果 f ( x ) f(x) f(x) 只有常数项,那么 g ( x ) g(x) g(x) 就是 f ( x ) f(x) f(x) 的逆元。

假设我们已经求出了 f ( x ) ⋅ G ( x ) ≡ 1 ( m o d x ⌈ n 2 ⌉ ) f(x)\cdot G(x)\equiv1\pmod{x^{\lceil\frac n2\rceil}} f(x)G(x)1(modx2n),要求函数 g ( x ) g(x) g(x) 满足 f ( x ) ⋅ g ( x ) ≡ 1 ( m o d x n ) f(x)\cdot g(x)\equiv1\pmod{x^n} f(x)g(x)1(modxn)

现在的目标是想办法用 G ( x ) , f ( x ) G(x),f(x) G(x),f(x) 表示出 g ( x ) g(x) g(x)

因为 f ( x ) ⋅ g ( x ) ≡ 1 ( m o d x n ) f(x)\cdot g(x)\equiv1\pmod{x^n} f(x)g(x)1(modxn),所以 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)g(x) 中次数小于 n n n 的项的系数除了常数项都为 0 0 0,那么对于次数小于 ⌈ n 2 ⌉ \left\lceil\frac{n}{2}\right\rceil 2n 的系数也一样,即
f ( x ) ⋅ g ( x ) ≡ 1 ( m o d x ⌈ n 2 ⌉ ) f(x)\cdot g(x)\equiv1\pmod{x^{\lceil\frac n2\rceil}} f(x)g(x)1(modx2n)

与前面一个式子 f ( x ) ⋅ G ( x ) ≡ 1 ( m o d x ⌈ n 2 ⌉ ) f(x)\cdot G(x)\equiv1\pmod{x^{\lceil\frac n2\rceil}} f(x)G(x)1(modx2n) 相减得到
f ( x ) ⋅ ( g ( x ) − G ( x ) ) ≡ 0 ( m o d x ⌈ n 2 ⌉ ) f(x)\cdot\left(g(x)-G(x)\right)\equiv0\pmod{x^{\lceil\frac n2\rceil}} f(x)(g(x)G(x))0(modx2n)

明显 f ( x ) ≢ 0 ( m o d x ⌈ n 2 ⌉ ) f(x)\not\equiv0\pmod{x^{\lceil\frac n2\rceil}} f(x)0(modx2n),可得
g ( x ) − G ( x ) ≡ 0 ( m o d x ⌈ n 2 ⌉ ) g(x)-G(x)\equiv0\pmod{x^{\lceil\frac n2\rceil}} g(x)G(x)0(modx2n)

这时, g ( x ) − G ( x ) g(x)-G(x) g(x)G(x) 最高系数不为零的项的次数最少都是 x ⌈ n 2 ⌉ x^{\lceil\frac n2\rceil} x2n 了,所以对于 ( g ( x ) − G ( x ) ) 2 (g(x)-G(x))^2 (g(x)G(x))2 次数小于 n n n 的项的系数肯定都是零了。

所以
g ( x ) 2 + G ( x ) 2 − 2 g ( x ) G ( x ) ≡ 0 ( m o d x n ) g(x)^2+G(x)^2-2g(x)G(x)\equiv0\pmod{x^{n}} g(x)2+G(x)22g(x)G(x)0(modxn)

又因为 f ( x ) ⋅ g ( x ) ≡ 1 ( m o d x n ) f(x)\cdot g(x)\equiv1\pmod{x^n} f(x)g(x)1(modxn)

两边同乘 f ( x ) f(x) f(x)
g ( x ) ≡ 2 G ( x ) − f ( x ) G ( x ) 2 ( m o d x n ) g(x)\equiv 2G(x)-f(x)G(x)^2\pmod{x^n} g(x)2G(x)f(x)G(x)2(modxn)

这样, g ( x ) g(x) g(x) 就求出来了。

N T T NTT NTT g ( x ) g(x) g(x) 时可以把 G ( x ) , f ( x ) G(x),f(x) G(x),f(x) 转换为点值表示法,算出 g ( x ) g(x) g(x) 后再转回去。

时间复杂度的递推式 T ( n ) = T ( n 2 ) + O ( n log ⁡ n ) T(n)=T(\dfrac n2)+O(n\log n) T(n)=T(2n)+O(nlogn),总的时间复杂度为 O ( n log ⁡ n ) O( n\log n) O(nlogn)

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=(1<<18)+1;
const ll mod=998244353,g=3;
int len=1,n;
ll a1[N],w,wn,a[N],ans[N];
ll ksm(ll a,ll b)
{
    ll ans=1;
    while(b){
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
void change(ll num[])
{
    for(int i=1,j=len/2;i<len-1;i++){
        if(i<j) swap(num[i],num[j]);
        int k=len/2;
        while(j>=k) j-=k,k>>=1;
        if(j<k) j+=k;
    }
}
void ntt(ll num[],int fl)
{
    for(int i=2;i<=len;i<<=1){
        if(fl==1) wn=ksm(g,(mod-1)/i);
        else wn=ksm(g,mod-1-(mod-1)/i);
        for(int j=0;j<len;j+=i){
            w=1;
            for(int k=j;k<j+i/2;k++){
                ll u=w*num[k+i/2]%mod,t=num[k];
                num[k]=(t+u)%mod;
                num[k+i/2]=(t-u+mod)%mod;
                w=w*wn%mod;
            }
        }
    }
    if(fl==-1){
        ll inv=ksm(len,mod-2);
        for(int i=0;i<len;i++) num[i]=num[i]*inv%mod;
    }
}
int read()
{
    int sum=0,c=getchar();
    while(c<48||c>57) c=getchar();
    while(c>=48&&c<=57) sum=sum*10+c-48,c=getchar();
    return sum;
}
void solve(int n,ll a[],ll ans[])
{
	if(n==1){ans[0]=ksm(a[0],mod-2);return;}
	solve((n+1)/2,a,ans);
	len=1;
	while(len<2*n) len*=2;
	for(int i=0;i<n;i++) a1[i]=a[i];
	for(int i=n;i<len;i++) a1[i]=0;
	change(a1),change(ans);
	ntt(a1,1),ntt(ans,1);
	for(int i=0;i<len;i++) ans[i]=ans[i]*(2-ans[i]*a1[i]%mod+mod)%mod;
	change(ans),ntt(ans,-1);
	for(int i=n;i<len;i++) ans[i]=0;
}
int main()
{
	scanf("%d",&n);
	for(int i=0;i<n;i++) scanf("%lld",&a[i]),a[i]%=mod;
	solve(n,a,ans);
	for(int i=0;i<n;i++) printf("%lld ",ans[i]);
}
  • 6
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值