分拆数简介

文章介绍了如何使用生成函数和多项式的方法来计算正整数的分拆数,涉及到对数、指数和模运算。通过欧拉筛和快速幂计算系数,然后应用NTT(NumericalTransformTechnique)进行高效计算,总的时间复杂度为O(nlogn)。代码示例展示了在LOJ6268问题中应用这些理论的实际实现。
摘要由CSDN通过智能技术生成

分拆数是对正整数 n n n 进行无序分拆的方案数。

举个例子,对 5 5 5 进行分拆,有以下几种方案。

  • 1 + 1 + 1 + 1 + 1 1+1+1+1+1 1+1+1+1+1
  • 2 + 1 + 1 + 1 2+1+1+1 2+1+1+1
  • 2 + 2 + 1 2+2+1 2+2+1
  • 3 + 1 + 1 3+1+1 3+1+1
  • 3 + 2 3+2 3+2
  • 4 + 1 4+1 4+1
  • 5 5 5

如何求分拆数呢?

方法

前置知识:生成函数,多项式科技。

考虑选若干 i i i,那么它们的和是 i i i 的倍数或 0 0 0。所以可以写出生成函数 ∑ j = 0 ∞ x i j \sum\limits_{j=0}^{\infty}x^{ij} j=0xij

因为 1 1 − x = ∑ j = 0 ∞ x j \dfrac{1}{1-x}=\sum\limits_{j=0}^{\infty}x^j 1x1=j=0xj,把 x x x 整体替换为 x i x^i xi,就得到 1 1 − x i ∑ j = 0 ∞ x i j \dfrac{1}{1-x^i}\sum\limits_{j=0}^{\infty}x^{ij} 1xi1j=0xij

如果选多个数,那么就是把 1 ∼ n 1\sim n 1n 对应的生成函数乘起来。

A ( x ) A(x) A(x) 表示 x x x 的分拆数,则 A ( x ) = 1 ∏ i = 1 ∞ ( 1 − x i ) A(x)=\dfrac{1}{\prod\limits_{i=1}^{\infty}(1-x^i)} A(x)=i=1(1xi)1

直接求这个 A ( x ) A(x) A(x) 是很慢的,我们要优化它。

两边取对数得
ln ⁡ A ( x ) = − ∑ i = 1 ∞ ln ⁡ ( 1 − x i ) \ln A(x)=-\sum\limits_{i=1}^{\infty}\ln(1-x^i) lnA(x)=i=1ln(1xi)

f ( x ) = − ∑ i = 1 ∞ ln ⁡ ( 1 − x i ) f(x)=-\sum\limits_{i=1}^{\infty}\ln(1-x^i) f(x)=i=1ln(1xi)

f ( x ) f(x) f(x) 求导得
f ′ ( x ) = ∑ i = 1 ∞ i x i − 1 1 − x i = ∑ i = 1 ∞ i x i − 1 ∑ j = 0 ∞ x i j = ∑ i = 1 ∞ ∑ j = 0 ∞ i x i ( j + 1 ) − 1 = ∑ i = 1 ∞ ∑ j = 1 ∞ i x i j − 1 \begin{aligned} f'(x)&=\sum\limits_{i=1}^{\infty}\dfrac{ix^{i-1}}{1-x^i}\\ &=\sum\limits_{i=1}^{\infty}ix^{i-1}\sum\limits_{j=0}^{\infty}x^{ij}\\ &=\sum\limits_{i=1}^{\infty}\sum\limits_{j=0}^{\infty}ix^{i(j+1)-1}\\ &=\sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty}ix^{ij-1}\\ \end{aligned} f(x)=i=11xiixi1=i=1ixi1j=0xij=i=1j=0ixi(j+1)1=i=1j=1ixij1

所以 f ( x ) = ∑ i = 1 ∞ ∑ j = 1 ∞ x i j j = ∑ i = 1 ∞ x i ∑ d ∣ i 1 d f(x)=\sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty}\dfrac{x^{ij}}{j}=\sum\limits_{i=1}^{\infty}x^i\sum\limits_{d\mid i}\dfrac{1}{d} f(x)=i=1j=1jxij=i=1xidid1

容易观察到求出全部系数的时间复杂度为 O ( n ln ⁡ n ) O(n\ln n) O(nlnn)

又有 A ( x ) = e f ( x ) A(x)=e^{f(x)} A(x)=ef(x)

用欧拉筛求出 f ( x ) f(x) f(x) 的系数后,再用多项式 exp ⁡ \exp exp 求答案即可。

总的时间复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn)

例题

LOJ6268 分拆数

板题,代码如下:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=(1<<18)+1;
const ll mod=998244353,g=3,inv2=499122177;
int len=1,n;
ll a1[N],w,wn,a[N],ans[N],invans[N],lnans[N],da[N],inva[N],omg[N],inv[N];
ll ksm(ll a,ll b)
{
    ll ans=1;
    while(b){
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
void change(ll num[])
{
    for(int i=1,j=len/2;i<len-1;i++){
        if(i<j) swap(num[i],num[j]);
        int k=len/2;
        while(j>=k) j-=k,k>>=1;
        if(j<k) j+=k;
    }
}
void ntt(ll num[],int fl)
{
    for(int i=2;i<=len;i<<=1){
        if(fl==1) wn=ksm(g,(mod-1)/i);
        else wn=ksm(g,mod-1-(mod-1)/i);
        for(int j=0;j<len;j+=i){
            w=1;
            for(int k=j;k<j+i/2;k++){
                ll u=w*num[k+i/2]%mod,t=num[k];
                num[k]=(t+u)%mod;
                num[k+i/2]=(t-u+mod)%mod;
                w=w*wn%mod;
            }
        }
    }
    if(fl==-1){
        ll inv=ksm(len,mod-2);
        for(int i=0;i<len;i++) num[i]=num[i]*inv%mod;
    }
}
int read()
{
    int sum=0,c=getchar();
    while(c<48||c>57) c=getchar();
    while(c>=48&&c<=57) sum=sum*10+c-48,c=getchar();
    return sum;
}
void getinv(int n,ll a[],ll ans[])
{
	if(n==1){ans[0]=ksm(a[0],mod-2);return;}
	getinv((n+1)/2,a,ans);
	len=1;
	while(len<2*n) len*=2;
	for(int i=0;i<n;i++) a1[i]=a[i];
	for(int i=n;i<len;i++) a1[i]=0;
	change(a1),change(ans);
	ntt(a1,1),ntt(ans,1);
	for(int i=0;i<len;i++) ans[i]=ans[i]*(2-ans[i]*a1[i]%mod+mod)%mod;
	change(ans),ntt(ans,-1);
	for(int i=n;i<len;i++) ans[i]=0;
}
void getln(int n,ll a[],ll ln[])
{
	for(int i=1;i<n;i++) da[i-1]=a[i]*i;
    da[n-1]=0;
    memset(inva,0,sizeof(inva));
	getinv(n,a,inva);
	len=1;
	while(len<2*n) len*=2;
	change(da),change(inva);
	ntt(da,1),ntt(inva,1);
	for(int i=0;i<len;i++) ln[i]=da[i]*inva[i]%mod;
	change(ln),ntt(ln,-1);
	for(int i=len-1;i>=0;i--) ln[i+1]=ksm(i+1,mod-2)*ln[i]%mod;
    for(int i=n;i<len;i++) ln[i]=0;
	ln[0]=0;
}
void getexp(int n,ll a[],ll ans[])
{
    if(n==1){ans[0]=1;return;}
    getexp((n+1)/2,a,ans);
    len=1;
    while(len<2*n) len*=2;
    // memset(lnans,0,sizeof(lnans));
    getln(n,ans,lnans);
    for(int i=0;i<n;i++) lnans[i]=(-lnans[i]+a[i]+mod)%mod;
    lnans[0]++;
    change(ans),change(lnans);
    ntt(ans,1),ntt(lnans,1);
    for(int i=0;i<len;i++) ans[i]=ans[i]*lnans[i]%mod;
    change(ans),ntt(ans,-1);
    for(int i=n;i<len;i++) ans[i]=0;
}
void init(int n)
{
    inv[1]=1;
    for(int i=2;i<=n;i++) inv[i]=inv[mod%i]*(mod-mod/i)%mod;
}
int main()
{
    init(1e5);
	scanf("%d",&n);
    for(int i=1;i<=n;i++){
        for(int j=1;i*j<=n;j++){
            (a[i*j]+=inv[j])%=mod;
        }
    }
	getexp(n+1,a,ans);
	for(int i=1;i<=n;i++) printf("%lld\n",ans[i]);

}

建议阅读我的下一篇博客再谈分拆数

  • 15
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值