华二(组合)

文章讨论了在一组整数中,如何根据数的性质(如互质、幂等)计算特定数(如1,5,7)的排列方案数,并考虑了其他数(如2,4,8视为2^2,6视为2和3的倍数)对排列的影响。计算过程涉及组合数学和模运算,时间复杂度为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

link

观察当两个数互质时有什么性质。发现当一个数等于 1 , 5 , 7 1,5,7 1,5,7 时,与其他数都互质,可以随意移动;等于 2 , 4 , 8 2,4,8 2,4,8 时,其实和 2 2 2 差不多(都是 2 2 2 的幂),把它们都看作 2 2 2,它们不能跨越,相对顺序是不变的。等于 3 , 9 3,9 3,9 时,看做 3 3 3,而等于 6 6 6 时,因为它同时是 2 2 2 3 3 3 的倍数, 2 , 3 2,3 2,3 都不能越过它。

n x n_x nx 表示 x x x 的出现次数,注意 2 , 4 , 8 2,4,8 2,4,8 是看做 2 2 2 的。

由上面分析,可以先安排好 1 , 5 , 7 1,5,7 1,5,7 的位置,方案数为 ( n n 1 ) ( n − n 1 n 5 ) ( n − n 1 − n 5 n 7 ) \dbinom{n}{n_1}\dbinom{n-n_1}{n_5}\dbinom{n-n_1-n_5}{n_7} (n1n)(n5nn1)(n7nn1n5);然后将剩下的空位拼在一起,看任意两个 6 6 6 之间的 2 , 3 2,3 2,3 能怎么排列,若 n 2 , n 3 n_2,n_3 n2,n3 是这两个 6 6 6 之间 2 , 3 2,3 2,3 的个数,显然方案数为 ( n 2 + n 3 n 2 ) \dbinom{n_2+n_3}{n_2} (n2n2+n3)。都乘在一起,就是答案。

时间复杂度 O ( n ) O(n) O(n)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
constexpr ll mod=998244353;
const int N=1e5+1;
int n,a[N],num2,num3,cnt,num1,num5,num7;
ll f[N],inv[N],ans=1;
ll ksm(ll a,ll b)
{
    ll ans=1;
    while(b){
        if(b&1) ans=ans*a%mod;
        b>>=1;
        a=a*a%mod;
    }
    return ans;
}
ll C(int n,int m)
{
    if(n<0||m<0||n<m) return 0;
    return f[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
    freopen("b.in","r",stdin);
    freopen("b.out","w",stdout);
    scanf("%d",&n);
    f[0]=1;
    for(int i=1;i<=n;i++) f[i]=f[i-1]*i%mod;
    inv[n]=ksm(f[n],mod-2);
    for(int i=n-1;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    a[++n]=6;
    cnt=1;
    int sum=0;
    for(int i=1;i<=n;i++){
        if(a[i]==6){
            sum+=num2+num3;
            ans=ans*C(num2+num3,num2)%mod;
            cnt++;
            num2=0,num3=0;
        }
        else{
            if(a[i]%2==0) num2++;
            else if(a[i]%3==0) num3++;
            else if(a[i]==1) num1++;
            else if(a[i]==5) num5++;
            else if(a[i]==7) num7++;
        }
    }
    cout<<ans*C(n-1,num1)%mod*C(n-1-num1,num5)%mod*C(n-1-num1-num5,num7)%mod;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值