问题描述:将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。
程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:
(1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。
(2)如果n<>k,但n能被k整除,则应打印出k的值,并用n除以k的商,作为新的正整数你n,重复执行第一步。
(3)如果n不能被k整除,则用k+1作为k的值,重复执行第一步。
源代码:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
def reduceNum(n):
print '{} = '.format(n),
if not isinstance(n, int) or n <= 0 :
print '请输入一个正确的数字 !'
exit(0)
elif n in [1] :
print '{}'.format(n)
while n not in [1] : # 循环保证递归
for index in xrange(2, n + 1) :
if n % index == 0:
n /= index # n 等于 n/index
if n == 1:
print index
else : # index 一定是素数
print '{} *'.format(index),
break
reduceNum(90)
reduceNum(100)
输出结果如下:
90 = 2 * 3 * 3 * 5
100 = 2 * 2 * 5 * 5