最小生成树算法总结

算法总结第5弹,最小生成树,有关生成树的问题有很多,这里先介绍个最常用的吧。

最小生成树

首先,生成树是建立在无向图中的,对于有向图,则没有生成树的概念,所以接下来讨论的图均默认为无向图。对于一个有n个点的图,最少需要n-1条边使得这n个点联通,由这n-1条边组成的子图则称为原图的生成树。一般来说,一个图的生成树并不是唯一的(除非原图本身就是一棵树)。
现在考虑带权图G,即图的边带权,则最小生成树就是在G中权值和最小的一颗生成树,显然最小生成树也不是唯一的,但是其权值唯一。有很多应用需要用到最小生成树的概念,比较直观的一个应用就是:有n个村庄,现在要在这些村庄之间修一些路,其中村庄i和村庄j之间的距离是Dij,现在要修最短的路使得所有村庄连接起来。
显然,这个问题可以直接套用最小生成树模型,找出最小生成树即找到了一个方案。
下面举一个最小生成树的例子:



对于如何寻找一个带权图的最小生成树,已经有了专门的求解方法,在具体讲解这些算法之前,我们这里先来挖掘一下最小生成树的一些特性,即一颗生成树要成为最小生成树,需要满足什么条件。

MST性质:
设一个带权无向图G(V,E,W) (V代表点集,E代表边集,W代表权值集),且T为G的一颗生成树,对于E中任意一条不属于T的边e,将其加入T中,会产生一条环(否则T不连通),如果e始终是环中权值最大的一条边,那么说明T满足MST性质。

以上是MST性质的定义,其中MST就是最小生成树的意思,但是现在并没有证明这个性质和最小生成树有什么关系,接下来将要证明,一颗生成树是最小生成树,当且仅当它满足MST性质。

引理1:对于图G(V,E,W)的两颗生成树T1和T2,若它们都满足MST性质,则它们的权值和相同。

证明:运用数学归纳法证明当有k条边在T1中而不在T2中时(0<=k<=n-1,同样的,这是也有k条边在T2中而不在T1中),T1的权值和等于T2的权值和。

1:首先,当k=0时,说明T1和T2的所有边都一样,则T1和T2是同一颗生成树,显然它们的权值和相等。
2:现在设当k<x时,T1和T2的权值和相等,现在要证明当k=x时,T1,T2权值和依然相等。考虑这样的边集S,它们在T1或T2中,但是不同时存在于T1和T2。在S中&#
  • 17
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值