《机器学习》读书笔记 1 序言

机器学习是人工智能领域发展最快的一个分支。20世纪80年代,符号(机器)学习可能还是主流,但自90年代,就是统计(机器)学习的天下了。周志华教授的《机器学习》全面详细的介绍了机器学习的各个分支,可作教材,也可作自学用书和科研参考书。

后面几段就是关于机器学习发展前途的一些问题及思考。

一、符号学习与统计学习的发展趋势:

1.大多数默认符号学习应该退出历史舞台

2.王珏教授:两者互相结合,螺旋式上升,进入更高级的形式。转折点是《概率图模型》

3.美国俄亥俄教授:统计学习早晚会退出AI领域。AI领域会转向基本的认知科学研究。

二、统计学习必须基于数据的独立同分布的假设吗?

1.独立同分布 对 统计学习 是必需的吗?

2.同分布与异分布之间的迁移学习会出现吗?

三、

1.周志华:深度学习在理论和技术上没有太多创新。只不过由于计算机速度提高,可以采用复杂度很高的算法,取得更高精度。实践意义大于理论意义。

2.深度学习打压统计学习了?还不够。原因有三:理论创新不足;应用范围有限,适合于神经网络;统计学习应用普遍,支持者多;

四、机器学习应更深入的参与机器学习

1.统计学习主要使用数学中概率统计

2.微分几何用于流形学习

3.微分方程用于归纳学习

4.代数应用很广,但都是基础工具

五、

1.符合学习使用离散方法,统计学习使用连续方法,但两种方法没有鸿沟

2.微分流形、李群、李代数就是沟通连续和离散的过程

3.现有方法并不完美

六、大数据能否对机器学习带来本质影响

1.量变到质变是普遍规律,但有本质变化吗?

2.机器学习与大数据可否互相推动发展?


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值