机器学习是人工智能领域发展最快的一个分支。20世纪80年代,符号(机器)学习可能还是主流,但自90年代,就是统计(机器)学习的天下了。周志华教授的《机器学习》全面详细的介绍了机器学习的各个分支,可作教材,也可作自学用书和科研参考书。
后面几段就是关于机器学习发展前途的一些问题及思考。
一、符号学习与统计学习的发展趋势:
1.大多数默认符号学习应该退出历史舞台
2.王珏教授:两者互相结合,螺旋式上升,进入更高级的形式。转折点是《概率图模型》
3.美国俄亥俄教授:统计学习早晚会退出AI领域。AI领域会转向基本的认知科学研究。
二、统计学习必须基于数据的独立同分布的假设吗?
1.独立同分布 对 统计学习 是必需的吗?
2.同分布与异分布之间的迁移学习会出现吗?
三、
1.周志华:深度学习在理论和技术上没有太多创新。只不过由于计算机速度提高,可以采用复杂度很高的算法,取得更高精度。实践意义大于理论意义。
2.深度学习打压统计学习了?还不够。原因有三:理论创新不足;应用范围有限,适合于神经网络;统计学习应用普遍,支持者多;
四、机器学习应更深入的参与机器学习
1.统计学习主要使用数学中概率统计
2.微分几何用于流形学习
3.微分方程用于归纳学习
4.代数应用很广,但都是基础工具
五、
1.符合学习使用离散方法,统计学习使用连续方法,但两种方法没有鸿沟
2.微分流形、李群、李代数就是沟通连续和离散的过程
3.现有方法并不完美
六、大数据能否对机器学习带来本质影响
1.量变到质变是普遍规律,但有本质变化吗?
2.机器学习与大数据可否互相推动发展?