机器学习
大浪随波
学以致用,知行合一
展开
-
《机器学习》读书笔记 4 第2章 模型评估与选择 一
一、经验误差与过拟合1.经验误差:学习器的实际输出与样本的真实输出之间的差异称为误差。学习器在训练集上的误差称为训练误差,或经验误差。在新样本上的误差称为泛化误差。泛华误差小的学习器较好。2.过拟合:在训练样本上表现太好,可能已经把训练样本自身的一些特点当作了所有潜在样本都会有的一般性质,这样会导致泛化性能下降的现象,称为过拟合。 与之相对的是欠拟合。3.欠拟合的解原创 2017-08-08 20:45:49 · 312 阅读 · 0 评论 -
《机器学习》读书笔记 4 第2章 模型评估与选择 二
三、性能度量在预测任务中,给定样例集 D={(x1,y1),(x2,y2),...(xm,ym)},其中yi是xi的真实标记。要评估学习器f的性能,就是要把学习器预测结果f(x)与真实标记y进行比较。回归任务常用的性能度量是均方误差。(缺公式,大意是每个样例的预测结果减去真实标记的平方和的平均值)更一般的均方误差描述:(缺公式,,大意是每个样例的预测结果减去真实标记的平方和 乘以 概率原创 2017-08-09 21:45:11 · 598 阅读 · 0 评论 -
《机器学习》读书笔记 1 序言
机器学习是人工智能领域发展最快的一个分支。20世纪80年代,符号(机器)学习可能还是主流,但自90年代,就是统计(机器)学习的天下了。周志华教授的《机器学习》全面详细的介绍了机器学习的各个分支,可作教材,也可作自学用书和科研参考书。后面几段就是关于机器学习发展前途的一些问题及思考。一、符号学习与统计学习的发展趋势:1.大多数默认符号学习应该退出历史舞台2.王珏教授:两者互相结合原创 2017-08-06 10:09:59 · 339 阅读 · 0 评论 -
《机器学习》读书笔记 2 前言
本书是面向中文读者的机器学习教科书。需要概率、统计、代数、优化、逻辑知识。全书16章:1-3章基础知识;4-10章 经典且常用的机器学习方法;11-16章 进阶知识;内容尽可能涵盖机器学习基础知识的各方面;很多重要、前沿的材料未能覆盖,仅可作为入门读物;原创 2017-08-06 11:06:22 · 377 阅读 · 0 评论 -
《机器学习》读书笔记 3 第1章 绪论
一、引言1.西瓜书由来:除了封皮的西瓜,这里举了一个判断好西瓜的例子:根蒂蜷缩、敲声浊响的青绿西瓜 很可能是好西瓜。2.机器学习正是这样的一门学科,它致力于研究如何通过计算的手段,利用经验来改善系统自身性能。3.机器学习研究的主要内容:在计算机上从数据中产生“模型”的算法,即学习算法。4.学习算法,输入是经验数据,输出是模型。5.本书中 “模型”泛指从数据中学得的结果。有文献“原创 2017-08-06 11:11:12 · 346 阅读 · 0 评论 -
《机器学习》读书笔记 5 第3章 线性模型
一、基本形式f(x) = w1x1+w2x2+…+wdxd+b向量形式:f(x)= wTx+b二、线性回归线性回归试图学得一个线性模型以尽可能准确地预测实数输出标记。对离散属性,若属性值间存在“序”关系,可通过连续化将其转为连续值。例如身高的高、矮可转化为1.0、0.0。高度的高、中、低可转化为1.0、0.5、0.0。若不存在序关系,假定有k个属性值,则通常转化为k原创 2017-08-15 21:09:27 · 508 阅读 · 0 评论 -
《机器学习》读书笔记 6 第4章 决策树
一 基本流程决策树是基于树结构来进行决策的。决策过程中提出的每个判定问题都是对某个属性的测试(判断)。对训练集D、属性A,决策树生成函数TreeGenerate(D,A):TreeGenerate(D,A){生成节点nodeif D中样本都属于类C :将node标记为C类叶节点,returnif A为空集 或 D中在A上取值都相同(所有样本在所有属性上取值相同,无法原创 2017-08-27 11:34:36 · 544 阅读 · 0 评论 -
《机器学习》读书笔记 7 第5章 神经网络 一
神经网络的基本概念原创 2017-08-29 22:27:00 · 437 阅读 · 0 评论 -
《机器学习》读书笔记 7 第5章 神经网络 二
神经网络训练、常见神经网络、深度学习原创 2017-09-05 22:10:47 · 639 阅读 · 0 评论