这篇论文提出了一种给定弱标注的实例分割方法。其将微软研究院提出的GrabCut进行扩展,可以实现给定bounding boxes的神经网络分类器训练。该论文将分类问题视为在稠密连接的条件随机场下的能量最小化问题,并通过不断迭代实现实例分割。
Abstract
In this paper, we propose DeepCut, a method to obtain pixelwise object segmentations given an image dataset labelled weak annotations, in our case bounding boxes. It extends the approach of the well-known GrabCut [1] method to include machine learning by training a neural network classifier from bounding box annotations. We formulate the problem as an energy minimisation problem over a densely-connected conditional random field and iteratively update the training targets to obtain pixelwise object segmentations. Additionally, we propose variants of the DeepCut method and compare those to a na¨ıve approach to CNN training under weak supervision. We test its applicability to solve brain and lung segmentation problems on a challenging fetal magnetic resonance dataset and obtain encouraging results in terms of accuracy
Method
让我们考虑在图上使用能量函数的分割问题,如[11]所述。我们为每个像素i寻找一个标记 f f f,以最小化:
E ( f ) = ∑ i ψ u ( f i ) + ∑ i < j ψ p ( f i , f j ) ( 1 ) E(f)=\sum_{i} \psi_{u}\left(f_{i}\right)+\sum_{i<j} \psi_{p}\left(f_{i}, f_{j}\right) \qquad\qquad (1) E(f)=i∑ψu(fi)+i<j∑ψp(fi,fj)(1)
其中, ψ u ( f i ) \psi_{u}\left(f_{i}\right) ψu(fi)作为一元数据的一致性项,测量给定数据的每个像素 i i i处标签 f f f的匹配度。另外,成对正则项 ψ p ( f i , f j ) \psi_{p}\left(f_{i}, f_{j}\right) ψp