时间限制: 1.0 秒
空间限制: 512 MiB
题目描述
西西艾弗岛上散落着 𝑛n 块田地。每块田地可视为平面直角坐标系下的一块矩形区域,由左下角坐标 (𝑥1,𝑦1)(x1,y1) 和右上角坐标 (𝑥2,𝑦2)(x2,y2) 唯一确定,且满足 𝑥1<𝑥2x1<x2、𝑦1<𝑦2y1<y2。这 𝑛n 块田地中,任意两块的交集面积均为 00,仅边界处可能有所重叠。
最近,顿顿想要在南山脚下开垦出一块面积为 𝑎×𝑏a×b 矩形田地,其左下角坐标为 (0,0)(0,0)、右上角坐标为 (𝑎,𝑏)(a,b)。试计算顿顿选定区域内已经存在的田地面积。
输入格式
从标准输入读入数据。
输入共 𝑛+1n+1 行。
输入的第一行包含空格分隔的三个正整数 𝑛n、𝑎a 和 𝑏b,分别表示西西艾弗岛上田地块数和顿顿选定区域的右上角坐标。
接下来 𝑛n 行,每行包含空格分隔的四个整数 𝑥1x1、𝑦1y1、𝑥2x2 和 𝑦2y2,表示一块田地的位置。
输出格式
输出到标准输出。
输出一个整数,表示顿顿选定区域内的田地面积。
样例输入
4 10 10
0 0 5 5
5 -2 15 3
8 8 15 15
-2 10 3 15
样例输出
44
样例解释
如图所示,选定区域内田地(绿色区域)面积为 4444。
子任务
全部的测试数据满足 𝑛≤100n≤100,且所有输入坐标的绝对值均不超过 104104。
解决方案:
#include <iostream>
using namespace std;
int main()
{
int n,a,b;
cin >> n;
cin >> a;
cin >> b;
int area[n][4];
int i,j;
for(i=0;i<n;i++){
for(j =0;j<4;j++)
{
cin >> area[i][j];
}
}
int sum = 0;
for(i =0 ;i<n;i++){
if(area[i][0] >= a||area[i][1] >= b||area[i][2] <=0 || area[i][2] <=0){
sum = sum+0;
}else{
area[i][0] = area[i][0]< 0? 0 : area[i][0];
area[i][1] = area[i][1]< 0? 0 : area[i][1];
area[i][2] = area[i][2]> a? a : area[i][2];
area[i][3] = area[i][3]> b? b : area[i][3];
sum = sum +(area[i][3]-area[i][1])*(area[i][2]-area[i][0]) ;
}
}
cout << sum;
return 0;
}