jieba分词原理

jieba分词作为最常用的中文分词工具,来学习记录一下。

jieba分词的逻辑框架图

在这里插入图片描述

jieba分词的四种模式支持四种分词模式:

精确模式:试图将句子最精确地切开,适合文本分析;(默认模式)
全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
paddle模式:利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。

支持载入自定义词典

开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
词频省略时使用自动计算的能保证分出该词的词频。

算法原理

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
  • 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法。

对于未知词的分词结果

对于未知词,jieba分词默认是使用HMM进行分词的;如果将HMM设置为False,就会按字切分。

import jieba
s = '谢先招最帅了'
cut = (' '.join(jieba.cut(s)))
print([i for i in cut.split()])

cut = (' '.join(jieba.cut(s,HMM = False)))
print([i for i in cut.split()])

得到结果如下:
[‘谢先招’, ‘最帅’, ‘了’]
[‘谢’, ‘先’, ‘招’, ‘最’, ‘帅’, ‘了’]

参考

jieba分词github
中文分词原理理解+jieba分词详解(二)
jieba分词的原理(文末有维特比算法讲解)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值