目录
Morris遍历 ,一种遍历二叉树的方式
时间复杂度O(N),额外空间复杂度O(1)
1. 牛逼的地方
普通遍历,因为本身树没有往回指的指针,所以需要递归用递归栈或者自己压栈的方式,遍历树结构,额外空间复杂度为O(h),h为二叉树的高度。
这里通过利用原树中大量空闲指针的方式,达到节省空间的目的。
2. 实质
建立一种机制,对于没有左子树的节点只到达一次,对于有左子树的节点会到达两次
3. 具体细节:
当前节点,最右节点,上一节点,下一节点,想到这些的时候记得重新弄个变量!!
Morris遍历细节 假设来到当前节点cur,开始时cur来到头节点位置
1)如果cur没有左孩子,cur向右移动(cur = cur.right)
2)如果cur有左孩子,找到左子树上最右的(为空或者指向自己终止)节点mostRight:
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
a.如果mostRight的右指针指向空,让其指向cur, 然后cur向左移动(cur = cur.left)
b.如果mostRight的右指针指向cur,让其指向null, 然后cur向右移动(cur = cur.right)
3)cur为空时遍历停止
4. morris遍历时间复杂度的证明
可以看出主要是找到左子树上最右的节点,这里涉及一个while循环,其他的肯定是O(N)的。
而且很容易判别这里的while最多也就是趋近于O(N),所以总体还是O(N)的算法。
看下图,所有左子树的右边界上的点都遍历两次,一次是null,然后指向自己,再左移,一次是指向自己,然后null,再右移。
5. 先序,中序,后序
moris序+先序+中序 示意图
先序、中序可以由morris遍历加工得到。
先序:能回到自己的两次的节点,第一次打印,回到自己一次的直接打印。
中序:能回到自己的两次的节点,第二次打印,回到自己一次的直接打印。
后序:后序遍历也可由morris遍历加工得到,但是把处理时机放在,能够达到两次的节点并且是第二次到达的时候。
具体就是第二次到的时候,打印左子树的右边界,最后记得打印整颗树的右边界。
6. 代码
C++版本
// Moris遍历
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x):val(x),left(NULL),right(NULL){}// 这里没有分号
};
// 有左孩子的到达了两次!!,没有左孩子的到达一次
void Moris(TreeNode* root){// 第一次出现的时候打印
if(root==NULL) return root;
TreeNode* cur=root;// 当前节点
//TreeNode* left=cur->left;
TreeNode* MostRight=NULL; // 左孩子的最右边界点
while(cur!=NULL){
MostRight =cur->left;//初始化为左孩子,找左孩子的右边界
if (MostRight!=NULL){
while( MostRight->right!=NULL && MostRight->right!=cur)
{
MostRight = MostRight->right;
}
if(MostRight->right==NULL){// 第一次出现
MostRight->right = MostRight;// 如果为空就指向自己
cur = cur->left;// 当前节点左移动
}
else// 第二次出现
{
MostRight->right = NULL;// 如果不为空,就指向空
cur = cur->right;// 当前节点右移动
}
}
else//没有左孩子的到达一次
{
cur=cur->right;//如果没有左节点,当前节点右移动
}
}
}
void MorisPre(TreeNode* root){// 第一次出现的时候打印
if(root==NULL) return;
TreeNode* cur=root;// 当前节点
//TreeNode* left=cur->left;
TreeNode* MostRight=NULL; // 左孩子的最右边界点
while(cur!=NULL){
MostRight =cur->left;//初始化为左孩子,找左孩子的右边界
if (MostRight!=NULL){
while( MostRight->right!=NULL && MostRight->right!=cur)
{
MostRight = MostRight->right;
}
if(MostRight->right==NULL){// 第一次出现
MostRight->right = MostRight;// 如果为空就指向自己
cout << cur->val<<" ";
cur = cur->left;// 当前节点左移动
}
else// 第二次出现
{
MostRight->right = NULL;// 如果不为空,就指向空
cur = cur->right;// 当前节点右移动
}
}
else//没有左孩子的到达一次
{
cout << cur->val<<" ";
cur=cur->right;//如果没有左节点,当前节点右移动
}
}
}
void MorisIn(TreeNode* root){// 第二出现的时候打印
if(root==NULL) return;
TreeNode* cur=root;// 当前节点
TreeNode* MostRight=NULL; // 最右边界点
while(cur!=NULL){
MostRight = cur->left;
if (MostRight!=NULL){
while( MostRight->right!=NULL && MostRight->right!=cur)
{
MostRight = MostRight->right;
}
if(MostRight->right==NULL){// 第一次出现
MostRight->right = MostRight;// 如果为空就指向自己
cur = cur->left;// 当前节点左移动
}
else// 第二次出现
{
MostRight->right = NULL;// 如果不为空,就指向空
cout << cur->val<<" ";
cur = cur->right;// 当前节点右移动
}
}
else
{
cout << cur->val<<" ";
cur=cur->right;//如果没有左节点,当前节点右移动
}
}
}
void MorisPos(TreeNode* root){// 第二出现的时候,逆序打印左子树的右边界
if(root==NULL) return;
TreeNode* cur=root;// 当前节点
TreeNode* MostRight=NULL; // 最右边界点
while(cur!=NULL){
MostRight = cur->left;
if (MostRight!=NULL){
while( MostRight->right!=NULL || MostRight->right!=left)
{
MostRight = MostRight->right;
}
if(MostRight->right==NULL){// 第一次出现
MostRight->right = MostRight;// 如果为空就指向自己
cur = cur->left;// 当前节点左移动
}
else// 第二次出现
{
MostRight->right = NULL;// 如果不为空,就指向空
printReverse(cur->left);// 逆序打印该节点左孩子的右边界
cur = cur->right;// 当前节点右移动
}
}
else
{
cur=cur->right;//如果没有左节点,当前节点右移动
}
}
printReverse(root);// 打印根节点对应的最右边界
}
void printReverse(TreeNode* root)// 逆序打印该节点左孩子的右边界
{
// 能第二次到的,说明肯定有左节点,因此不需要判断左节点是否为空
TreeNode* tail = ReverseEdge(root);// 逆序他的右边界
TreeNode* cur =tail;
while(cur->right!=nullptr)
{
cout << cur->val<<" ";
cur=cur->right;//来到左子树右边界
}
ReverseEdge(tail);// 打印完后还原
TreeNode* ReverseEdge(TreeNode* root)
{
TreeNode* pre=NULL;
TreeNode* next=NULL;
TreeNode* cur =root;
while(cur!=NULL){
next = cur->right;
cur->right = pre;
pre = cur;
cur = next;
}
return pre;
}
package class05;
public class Code01_MorrisTraversal {
public static class Node {
public int value;
Node left;
Node right;
public Node(int data) {
this.value = data;
}
}
public static void process(Node head) {
if(head == null) {
return;
}
// 1
process(head.left);
// 2
process(head.right);
// 3
}
public static void morris(Node head) {
if (head == null) {
return;
}
Node cur = head;
Node mostRight = null;
while (cur != null) {
mostRight = cur.left; // mostRight是cur左孩子
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
// mostRight变成了cur左子树上,最右的节点
if (mostRight.right == null) { // 这是第一次来到cur
mostRight.right = cur;
cur = cur.left;
continue;
} else { // 这是第二次来到cur
mostRight.right = null;
}
}
cur = cur.right;
}
}
public static void morrisPre(Node head) {
if (head == null) {
return;
}
Node cur = head;
Node mostRight = null;
while (cur != null) {
mostRight = cur.left; // mostRight是cur左孩子
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
// mostRight变成了cur左子树上,最右的节点
if (mostRight.right == null) { // 这是第一次来到cur
System.out.println(cur.value);
mostRight.right = cur;
cur = cur.left;
continue;
} else { // 这是第二次来到cur
mostRight.right = null;
}
} else { // 当前cur,只能来到一次
System.out.println(cur.value);
}
cur = cur.right;
}
}
public static void morrisIn(Node head) {
if (head == null) {
return;
}
Node cur = head;
Node mostRight = null;
while (cur != null) {
mostRight = cur.left; // mostRight是cur左孩子
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
// mostRight变成了cur左子树上,最右的节点
if (mostRight.right == null) { // 这是第一次来到cur
mostRight.right = cur;
cur = cur.left;
continue;
} else { // 这是第二次来到cur
mostRight.right = null;
}
}
System.out.println(cur.value);
cur = cur.right;
}
}
public static void morrisPos(Node head) {
if (head == null) {
return;
}
Node cur1 = head;
Node cur2 = null;
while (cur1 != null) {
cur2 = cur1.left;
if (cur2 != null) {
while (cur2.right != null && cur2.right != cur1) {
cur2 = cur2.right;
}
if (cur2.right == null) {
cur2.right = cur1;
cur1 = cur1.left;
continue;
} else {
cur2.right = null;
printEdge(cur1.left);
}
}
cur1 = cur1.right;
}
printEdge(head);
System.out.println();
}
public static void printEdge(Node head) {
Node tail = reverseEdge(head);
Node cur = tail;
while (cur != null) {
System.out.print(cur.value + " ");
cur = cur.right;
}
reverseEdge(tail); //记得再还原
}
public static Node reverseEdge(Node from) {
Node pre = null;
Node next = null;
while (from != null) {
next = from.right;
from.right = pre;
pre = from;
from = next;
}
return pre;
}
// for test -- print tree
public static void printTree(Node head) {
System.out.println("Binary Tree:");
printInOrder(head, 0, "H", 17);
System.out.println();
}
public static void printInOrder(Node head, int height, String to, int len) {
if (head == null) {
return;
}
printInOrder(head.right, height + 1, "v", len);
String val = to + head.value + to;
int lenM = val.length();
int lenL = (len - lenM) / 2;
int lenR = len - lenM - lenL;
val = getSpace(lenL) + val + getSpace(lenR);
System.out.println(getSpace(height * len) + val);
printInOrder(head.left, height + 1, "^", len);
}
public static String getSpace(int num) {
String space = " ";
StringBuffer buf = new StringBuffer("");
for (int i = 0; i < num; i++) {
buf.append(space);
}
return buf.toString();
}
public static void main(String[] args) {
Node head = new Node(4);
head.left = new Node(2);
head.right = new Node(6);
head.left.left = new Node(1);
head.left.right = new Node(3);
head.right.left = new Node(5);
head.right.right = new Node(7);
printTree(head);
morrisIn(head);
morrisPre(head);
morrisPos(head);
printTree(head);
}
}