机器学习
Avalonist
这个作者很懒,什么都没留下…
展开
-
吴恩达课程
课程名称:Machine Learning作者:Andrew Ng(吴恩达) 中文: http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B 英文: http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLear原创 2017-11-24 21:58:07 · 843 阅读 · 0 评论 -
Regression Tree 回归树
1. 引言AI时代,机器学习算法成为了研究、应用的热点。当前,最火的两类算法莫过于神经网络算法(CNN、RNN、LSTM等)与树形算法(随机森林、GBDT、XGBoost等),树形算法的基础就是决策树。决策树因其易理解、易构建、速度快的特性,被广泛应用于统计学、数据挖掘、机器学习领域。因此,对决...转载 2018-05-26 16:46:12 · 2901 阅读 · 1 评论 -
计算学习理论博客待整理
PAC learning 到底在做什么? 30分钟了解PAC学习理论——计算学习理论第一讲原创 2018-05-20 23:16:33 · 966 阅读 · 0 评论 -
免费的开源数据挖掘工具
Orange,RapidMiner,Weka,JHepWork,KNIM,五个免费开源的数据挖掘软件原创 2018-04-25 23:45:13 · 758 阅读 · 0 评论 -
ROC and AUC
参考: ROC和AUC介绍以及如何计算AUC 多分类下的ROC曲线和AUCROC曲线首先ROC分析的是二元分类模型,也就是输出类别只有两种值的分类模型。对于其他的多类分类模型可以做相应的转换,本文后面再作分析。ROC曲线的特点:ROC曲线的横轴是False postive rate,纵轴是True positive rate一个特定分类模型在一个测试数据集上只会得到一个FP...转载 2018-04-17 13:23:29 · 402 阅读 · 0 评论 -
贝叶斯理论学习书籍
我上学的时候使用的教材是Bayesian Data Analysis, Andrew Gelman编写的。个人觉得这本还挺易懂的,它从什么是贝叶斯推断(bayesian inference)开始讲起,到基础贝叶斯分析,再讲到高阶贝叶斯分析(引入马尔可夫链等),给人以循循善诱的感觉。贝叶斯方面的书应该不少,你可以去亚马逊首页搜索栏,输入bayesian,就得到很多结果(呵呵,授人以鱼不如授人以渔...转载 2018-03-28 19:53:54 · 6994 阅读 · 1 评论 -
sklean中的NaiveBayes
朴素贝叶斯理论推导与三种常见模型转载 2018-04-03 21:11:00 · 403 阅读 · 0 评论 -
sklearn加载外部数据集
1.使用numpy.loadtxt2.解决Arff格式的方案参考.arff files with scikit-learn? & LIAC-ARFF v2.1使用scipy.io.arff.loadarfffrom scipy.io import arffdataset=arff.loadarff("D:/res/weather.nominal.arff")...原创 2018-04-03 14:22:45 · 10469 阅读 · 1 评论 -
绘制决策树的决策空间
reference: scikit-learn决策树算法类库使用小结from itertools import productimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsfrom sklearn.tree import DecisionTreeClassifier# ...转载 2018-04-03 08:45:49 · 869 阅读 · 0 评论 -
决策树的起源——Hunt算法
最早的决策树算法是由Hunt等人于1966年提出,Hunt算法是许多决策树算法的基础,包括ID3、C4.5和CART等,本文以Hunt算法为例介绍决策树算发的基本思想及决策树的一些设计问题。Hunt算法Hunt算法通过将训练记录相继划分为较纯的子集,以递归方式建立决策树。设Dt是与结点t相关联的训练记录集,而y = { y1, y2, …, yc}为类标号,Hunt算法的递归定义如下: ...原创 2018-04-09 23:23:49 · 17130 阅读 · 0 评论 -
sklearn使用LIAC-ARFF加载arff数据
LIAC-ARFF v2.1 Documentimport arffdataset=arff.load(open("D:/res/weather.numeric.arff"))In [12]: datasetOut[12]:{'attributes': [('outlook', ['sunny', 'overcast', 'rainy' ('temperature', 'NUM...原创 2018-04-09 19:46:00 · 2498 阅读 · 0 评论 -
CART树算法详解
http://blog.csdn.net/baimafujinji/article/details/53269040算法步骤CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限个单元,并在这些单元上确定预测的概率分布,也就是在输入给定的条件下输出的...转载 2018-03-22 08:05:57 · 53407 阅读 · 10 评论 -
机器学习中的重要概念
假设空间(hypothesis space)机器学习中可能的函数构成的空间称为“假设空间”。 监督学习的任务是学习一个模型,使模型能够对任意给定的输入,对其相应的输出做出一个好的预测。模型属于由输入空间到输出空间的映射的集合,这个集合就是假设空间。假设空间的确定意味着学习范围的确定。data point A data point or observation is a set...原创 2018-03-25 22:34:46 · 945 阅读 · 0 评论 -
上海交大周志华教授《机器学习导论》和《统计机器学习》公开课视频的正确播放顺序
周志华教授的两门机器学习公开课是很好的机器学习资源。但在上海交大的公开课视频网站上挂出的教学视频顺序有点乱。对于初学者来说,如果没看对顺序的话,会觉得讲得很乱,从而错过这么优质的资源。事实上板书很完整,有电子版讲义可下载。只是讲义上有个别地方有点笔误,但不影响理解。能用黑板直接推导的...转载 2018-03-30 16:16:32 · 6823 阅读 · 6 评论 -
参数和非参数的机器学习算法
原文:http://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/ 作者:Jason Brownlee 翻译:AI梦蝶译者注:这篇文章中主要介绍了参数和非参的一些机器学习模型的区别。 一个参数机...转载 2018-03-17 12:53:38 · 1246 阅读 · 0 评论 -
理解机器学习中的VC维
VC维的来龙去脉Computational Learning Theory - VC Dimension 这篇文章中有几个重要的链接要仔细看一下原创 2018-06-12 14:20:09 · 1287 阅读 · 0 评论