34、Linux 信号机制详解

Linux 信号机制详解

信号基础

信号是 UNIX 和 Linux 系统针对某些情况生成的事件,进程接收到信号后可采取相应行动。“raise”表示信号的生成,“catch”表示信号的接收。

信号可由多种错误情况触发,如内存段违规、浮点处理器错误或非法指令等。同时,shell 和终端处理程序也会生成信号以引发中断,还能在进程间显式传递信号,用于信息传递或行为修改。信号的编程接口是统一的,信号可以被生成、捕获并处理,或者(至少部分信号)被忽略。

信号名称通过包含头文件 signal.h 来定义,都以 SIG 开头,常见信号如下表所示:
| 信号名称 | 描述 |
| ---- | ---- |
| SIGABORT | 进程中止 |
| SIGALRM | 闹钟信号 |
| SIGFPE | 浮点异常 |
| SIGHUP | 挂断信号 |
| SIGILL | 非法指令 |
| SIGINT | 终端中断信号,通常通过 Ctrl+C 触发 |
| SIGKILL | 强制终止信号,不能被捕获或忽略 |
| SIGPIPE | 向无读端的管道写入时产生 |
| SIGQUIT | 终端退出信号 |
| SIGSEGV | 无效内存段访问 |
| SIGTERM | 终止信号 |
| SIGUSR1 | 用户自定义信号 1 |
| SIGUSR2 | 用户自定义信号 2 |

如果进程收到这些信号却未提前安排捕获,将立即终止,通常还会创建一个核心转储文件

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值