因果推断:从理论到实践的全面指南
1. 因果效应估计与前门准则
 在因果分析中,我们常常需要估计变量之间的因果效应。以GPS使用对空间记忆的影响为例,我们可以通过前门准则来进行估计。具体步骤如下: 
 - 首先,我们有两个线性回归模型。通过计算  lr_zx.coef_[0] * lr_yxz.coef_[1]  ,即取第一个模型(关于GPS使用)的第0个系数和第二个模型(在给定GPU使用情况下,海马体体积对空间记忆的影响)的第1个系数相乘,得到因果效应的估计值为 -0.43713599902679。 
 - 实际上,在一个完整的线性结构因果模型(SCM)中,真正的因果效应等于从X  →  Z和Z  →  Y因果路径上系数的乘积。在我们的例子中,GPS使用对空间记忆的真实因果效应为 -0.6 * 0.7 = -0.42。 
 - 对比发现,前门调整估计和实验估计都与真实值相当接近(误差分别约为4%和小于1%),而简单估计的误差则超过了22%。这显示了前门准则在因果效应估计中的有效性。 
前门准则的工作需要满足三个条件和一个额外假设,我们可以从基本原理推导出调整公式。通过构建SCM并生成观测和干预分布,前门准则能够准确地从观测数据中近似实验结果。
2. 因果推断的其他准则:do - 演算
并非所有的因果图都能使用后门或前门准则。幸运的是,后门和前门准则是更通用的do - 演算框架的特殊情况。do - 演算已被证明是完备的,这意味着如果在给定的有向无环图(DAG)G中存在可识别的因果效应,就可以使用do - 演算的规则找到它。
2.1 do - 演算的符号定义
在介
 
                       
                             
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   36
					36
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            