5、图着色问题中的哈密顿着色与星缺陷顶点着色

图着色问题中的哈密顿着色与星缺陷顶点着色

1. 哈密顿着色示例

在图的研究中,哈密顿着色是一个重要的概念。下面通过两个具体的例子来展示如何计算特定图的最优哈密顿着色。

1.1 示例 1:B4,2(4) 的最优哈密顿着色

对于 B4,2(4),有如下参数:
- (k = 1)
- (n = 3)
- (d = 4)
- (r = \lfloor\frac{d}{2}\rfloor = 2)
- (\Phi_{\lfloor\frac{d}{2}\rfloor}(kn) = \Phi_2(3) = 1 + 3 = 4)

根据定理 7,其最优哈密顿着色数 (hc(B4,2(4))) 的计算过程如下:
[
\begin{align }
hc(B4,2(4))&= n^2(k + 1)\left[\frac{\Phi_{\lfloor\frac{d}{2}\rfloor}(kn)}{(k + 1)\Phi_{\lfloor\frac{d}{2}\rfloor}(kn) - 2\lfloor\frac{d}{2}\rfloor} + \frac{2(\Phi_{\lfloor\frac{d}{2}\rfloor}(kn) - \lfloor\frac{d}{2}\rfloor)}{kn - 1}\right] + n\
&= 3^2\cdot(1 + 1)\left[\frac{4}{(1 + 1)\cdot 4 - 2\cdot 2} + \frac{2(4 - 2)}{3 - 1}\right] + 3\
&= 9\times2\t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值