六、平面图和顶点着色

1、平面图

\qquad 给定一个图 G = ( V , E ) G=(V,E) G=(V,E),如果 G G G 可以平摊在一个平面上,使得任意两条边除端点外无其他公共点,则称 G G G为平面图。
\qquad 图中的面分为内部面和外部面,给定一个图一定有外部面存在。

1.1 欧拉公式

\qquad 定理一:设 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)连通图,如果 G G G中有 f f f个面,则存在关系 p − q + f = 2 p-q+f=2 pq+f=2
\qquad 推论一:设 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)连通图,如果 G G G中有 f f f个面,每一个面有 n n n条边组成,则 q = n ⋅ ( p − 2 ) / ( n − 2 ) q=n\cdot(p-2)/(n-2) q=n(p2)/(n2)
\qquad 推论二:设 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)连通图,如果 G G G中有 f f f个面, G G G的每一个面都是三角形,则 q = 3 p − 6 q=3p-6 q=3p6,且这个图叫做最大平面图,即再任意添加一条边,则图 G G G不为平面图。
\qquad 推论三:设 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)连通图,如果 G G G中有 f f f个面, G G G的每一个面都是四边形,则 q = 2 p − 4 q=2p-4 q=2p4
\qquad 推论四:设 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)连通图,如果 G G G中有 f f f个面, G G G中没有三角形,则 q ≤ 2 p − 4 q\leq 2p-4 q2p4
\qquad 推论五:设 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)连通图,如果 G G G中有 f f f个面, G G G是平面图,则 q ≤ 3 p − 6 q\leq 3p-6 q3p6
\qquad 推论六 K 5 K_5 K5不是可平面图, K 3.3 K_{3.3} K3.3不是可平面图。
\qquad 推论七:设 G = ( V , E ) G=(V,E) G=(V,E)是一个平面图,则 ∃ v ∈ V \exist v\in V vV,使得 d e g ( v ) ≤ 5 deg(v) \le 5 deg(v)5

2、非平面哈密顿图

\qquad Grinberg定理:设 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)平面图, G G G是哈密顿图,则有下式成立:
\qquad 1 ⋅ f 3 + 2 ⋅ f 4 + 3 ⋅ f 5 + . . . = ∑ i = 1 p ( i − 2 ) ⋅ f i = p − 2 1\cdot f_3+2\cdot f_4+3\cdot f_5+... = \sum_{i = 1}^p(i-2)\cdot f_i = p-2 1f3+2f4+3f5+...=i=1p(i2)fi=p2
\qquad 1 ⋅ g 3 + 2 ⋅ g 4 + 3 ⋅ g 5 + . . . = ∑ i = 1 p ( i − 2 ) ⋅ g i = p − 2 1\cdot g_3+2\cdot g_4+3\cdot g_5+... = \sum_{i = 1}^p(i-2)\cdot g_i = p-2 1g3+2g4+3g5+...=i=1p(i2)gi=p2
\qquad 1 ⋅ f 3 − g 3 + 2 ⋅ f 4 − g 4 + 3 ⋅ f 5 − g 5 + . . . = ∑ i = 1 p ( i − 2 ) ⋅ ( f i − g i ) = 0 1\cdot f_3-g_3+2\cdot f_4-g_4+3\cdot f_5-g_5+... = \sum_{i = 1}^p(i-2)\cdot (f_i-g_i) = 0 1f3g3+2f4g4+3f5g5+...=i=1p(i2)(figi)=0
\qquad 其中, f i f_i fi表示哈密顿圈内由 i i i条边组成的面; g i g_i gi表示哈密顿圈外由 i i i条边组成的面的个数。

3、图的顶点着色问题

\qquad 图的顶点着色指的是将图中所有的顶点进行着色,其中任意一条边的两个端点的颜色不相同。图的顶点着色问题中有以下系列基本概念:
\qquad n n n-可着色:将一个图 G G G进行着色最少需要 n n n种颜色,则图 G G G称为 n n n可着色图。其中,最少的颜色数 n n n称为色数,记作 κ ( G ) = n \kappa(G)=n κ(G)=n
\qquad 下列是几个典型图中的色数:

  • κ ( K p ) = p \kappa(K_p) = p κ(Kp)=p
  • κ ( C 2 n ) = 2 \kappa(C_{2n}) = 2 κ(C2n)=2,其中, C 2 n C_{2n} C2n表示具有 2 n 2n 2n个顶点的圈
  • κ ( C 3 n ) = 3 \kappa(C_{3n}) = 3 κ(C3n)=3
  • κ ( T r e e ) = 2 \kappa(T_{ree}) = 2 κ(Tree)=2,任意树结构的色数为2,因为树具有典型的层次结构

3.1 色数的上下界

\qquad 给定一个图 G = ( V , E ) G=(V,E) G=(V,E)是一个 ( p , q ) (p,q) (p,q)图,图 G G G的色数的下界可以计算为: κ ( G ) ≥ p / ( p − δ ( G ) ) \kappa(G) \ge p/(p-\delta(G)) κ(G)p/(pδ(G)),其中, δ ( G ) \delta(G) δ(G)表示 G G G中所有顶点的最小度数。
\qquad 定理一:任意图 G = ( V , E ) G=(V,E) G=(V,E) δ ( G ) + 1 \delta(G)+1 δ(G)+1可着色,任意平面图 G = ( V , E ) G=(V,E) G=(V,E) δ ( G ) \delta(G) δ(G)可着色的。
\qquad 定理二:任意平面图 G = ( V , E ) G=(V,E) G=(V,E)是6可着色的。
\qquad 五色定理:任意一个平面图都是5可着色的。

THE END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dragon Fly

多谢老板赏钱[抱拳抱拳抱拳]

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值