灵感来源
- 保持更新,努力学习
- python脚本学习
存在重复元素 II
解题思路
这个问题可以通过哈希表来高效解决。具体思路如下:
- 使用哈希表记录元素最后一次出现的位置:遍历数组,用一个哈希表存储每个元素的最后一次出现的索引。
- 检查索引差:对于每个元素,如果它已经在哈希表中存在,计算当前索引与哈希表中存储的索引的差值。如果这个差值小于等于给定的
k
,则返回True
。 - 更新哈希表:无论元素是否已经存在于哈希表中,都更新它的索引为当前索引。这样可以确保哈希表中存储的是元素最后一次出现的位置,从而使得后续的检查能够得到最小的索引差。
这种方法的时间复杂度是 O (n),其中 n 是数组的长度,因为只需要遍历一次数组。空间复杂度是 O (min (n, k)),因为哈希表中最多存储 k+1 个元素。
class Solution:
def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool:
# 用于存储元素及其最后一次出现的索引
num_dict = {}
for i, num in enumerate(nums):
# 如果元素已经在字典中,检查索引差
if num in num_dict and i - num_dict[num] <= k:
return True
# 更新元素的最后一次出现的索引
num_dict[num] = i
return False
逐行解释
class Solution:
def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool:
# 创建一个字典,用于存储每个元素及其最后一次出现的索引位置
num_dict = {}
# 遍历数组中的每个元素及其索引
for i, num in enumerate(nums):
# 检查当前元素是否已经在字典中,并且当前索引与上次出现的索引之差 <=k
if num in num_dict and i - num_dict[num] <= k:
return True # 找到满足条件的重复元素,返回True
# 更新字典中该元素的索引为当前索引(无论是否已存在,确保记录最新位置)
num_dict[num] = i
# 遍历结束后仍未找到满足条件的重复元素,返回False
return False