在使用大型语言模型(LLM)时,通常会得到文本输出。然而,在某些情况下,我们希望将这些输出解析为结构化的信息。尽管某些模型提供者支持内置的方法来返回结构化输出,但并非所有模型都提供这种功能。为此,我们可以借助"输出解析器"类,来将语言模型的响应结构化。
技术背景介绍
输出解析器主要有两种方法需要实现:
- Get format instructions:返回一个字符串,包含如何格式化语言模型输出的指令。
- Parse:接受一个字符串(假设为语言模型的响应)并将其解析为某种结构化格式。
此外,还有一个可选方法:
- Parse with prompt:接收一个字符串(假设为语言模型的响应)和提示信息,将其解析为结构化格式。此方法主要用于在需要重试或修复输出时,利用提示信息提供支持。
核心原理解析
输出解析器的核心思想是通过预定义的数据结构和格式化指令,将语言模型的文本输出转化为有定义的结构化数据。借助库如Pydantic和LangChain,我们可以轻松实现这一功能。
示例:PydanticOutputParser
以下代码展示了如何使用PydanticOutputParser
解析语言模型的输出:
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field, validator
from langchain_openai import OpenAI
# 初始化OpenAI模型
model = OpenAI(
base_url='https://yunwu.ai/v1', # 国内稳定访问
api_key='your-api-key',
model_name="gpt-3.5-turbo-instruct",
temperature=0.0
)
# 定义数据结构
class Joke(BaseModel):
setup: str = Field(description="用以铺垫笑话的问题")
punchline: str = Field(description="用以回答笑话的问题")
# 加入自定义验证逻辑
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("问题没有正确结束!")
return field
# 设置解析器并注入格式化指令
parser = PydanticOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
template="回答用户的查询。\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)
# 生成语言模型的响应并解析输出
prompt_and_model = prompt | model
output = prompt_and_model.invoke({"query": "Tell me a joke."})
parsed_output = parser.invoke(output)
print(parsed_output) # 结果: Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!')
应用场景分析
这种方法特别适用于以下场景:
- 数据提取:从自然语言中提取特定字段数据。
- API集成:将模型的文本输出直接集成到下游API中,需结构化数据。
- 复杂对话系统:需要从模型输出中提取特定信息,以响应用户的查询。
实践建议
- 选择合适的解析器: 根据输出需求选择合适的解析器,如
PydanticOutputParser
适合严格的结构化数据,而SimpleJsonOutputParser
更灵活。 - 自定义验证: 利用Pydantic的验证功能,确保解析后的数据符合业务逻辑。
- 测试与优化: 在实际应用中测试解析器的性能,并根据具体需求进行优化。
如果遇到问题欢迎在评论区交流。
—END—