洛谷P1220 关路灯(DP或深搜)
题目描述
某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。
现在已知老张走的速度为1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。
请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。
输入输出格式
输入格式:
文件第一行是两个数字n(0<n<50,表示路灯的总数)和c(1<=c<=n老张所处位置的路灯号);接下来n行,每行两个数据,表示第1盏到第n盏路灯的位置和功率。
输出格式:
一个数据,即最少的功耗(单位:J,1J=1W·s)。输入输出样例
输入样例#1:
5 32 10
3 20
5 20
6 30
8 10
输出样例#1:
270说明
输出解释:{此时关灯顺序为3 4 2 1 5,不必输出这个关灯顺序}
解题分析
可以用动态规划或深搜解。方法一 动态规划
考虑区间[i, j]内的路灯全部关闭,其他路灯都没有关闭时所消耗的功率。对于每一个区间,所消耗的功率不仅与区间长度(所包含的路灯的数量)有关,而且与老张当前所处的位置有关,当然,老张只能处于区间的两个端点处,因此构造状态如下:
f[i][j][2],表示在区间[i, j]中所消耗的功率数,具体说,就是当区间[i, j]中的所有等都已经关闭,且其他灯都没有关闭时所消耗的总功率,这里的总功率是指所有路灯消耗的功率总和。f[i][j][0]表示当前老张在i处,f[i][j][1]表示老张在j处。
对于f[i][j][0],该状态可以由区间[i+1, j]的状态获得,如果老张在[i+1, j]状态时在i+1处,则只需要向左走一步就能到达f[i][j][0],且增加的功率为所走的距离dis[i][i+1]与除区间[i+1, j]之外的其他路灯的总功率的乘积;同样,如果老张在[i+1, j]的j处,则走到i出需要走的距离为dis[i][j],增加的总功率为dis[i][j]与除区间[i+1, j]之外的其他路灯的总功率的乘积。f[i][j][0]为上述两者中的较小者,即:
f[i][j][0] = min(f[i+1][j][0] + dis[i][i+1]*get_remain(i+1, j), f[i+1][j][1] + dis[i][j]*get_remain(i+1, j)
其中,get_remain(i+1, j)为除区间[i+1, j]的其他所有路灯的功率之和。
同样可以得到:
f[i][j][1] = min(f[i][j-1][0] + dis[i][j]*get_remain(i, j-1), f[i][j-1][1] + dis[j-1][j]*get_remain(i, j-1)
可以从区间长度gap(所包含的路灯数量)为2开始计算每一个状态的值。gap最多为n。
初始值:对于gap为1的情形需要给定初始值,对于出发点c,可设f[c][c][0]和f[c][c][1]都为0(因为关灯不需要耗费时间),而对于其他位置,都设置f[i][i][0]和f[i][i][1]为一个较大的值。
最终结果为f[1][n][0]和f[1][n][1]中较小者。
方法二 深搜
从每一个位置出发,都有两个方向可走:向左和向右,因此形成一个搜索树,对该搜索树进行深搜即可。在深搜过程中,需要记录如下几个数据:
1、当前的位置,即老张当前处于什么位置now。
2、当前已关灯的区间的左端点le和右端点re,则从当前位置可以有两个选择,向左走到le-1或向右走到re+1。
3、未关灯的功率总和all_w,则当从now走到下一个位置next(其值为le-1或re+1)时,所增加的功耗为dis[now][next]*all_w,当关闭一个灯时,all_w需要减去该灯的功率。
4、关闭等的数量step,当所有等全部关闭时,本轮搜索结束。
剪枝:当所得到的结果已大于已有的结果时,结束本轮搜索。
#include
#include
#include
#include
#include
#include
#include
using namespace std; #define MIN(a, b) ((a)<(b)?(a):(b)) int n, c, f[52][52][2], // f[i][j][0]:区间[i, j]内的路灯关闭时消耗的总功率,且当前老张在i处 // f[i][j][0]:区间[i, j]内的路灯关闭时消耗的总功率,且当前老张在j处 dis[52][52], sum[52]= {0}; struct node { int d; int w; void set(int d1, int w1) { d = d1; w = w1; } } light[52]; void get_i(int &x) { char ch = getchar(); x = 0; while(!isdigit(ch)) ch = getchar(); while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } } // 闭区间[x, y]之外的路灯的功率总和 int get_remain(int x, int y) { return sum[n] - (sum[y] - sum[x-1]); } void resolve() { int gap, i, j; for(gap=2; gap<=n; gap++) { // 区间的间距 for(i=1; j=i+gap-1, j<=n; i++) { // i:区间的左端点 j:区间的右端点 f[i][j][0] = MIN(f[i+1][j][0] + dis[i+1][i]*get_remain(i+1, j), f[i+1][j][1] + dis[i][j]*get_remain(i+1, j)); f[i][j][1] = MIN(f[i][j-1][0] + dis[i][j]*get_remain(i, j-1), f[i][j-1][1] + dis[j][j-1]*get_remain(i, j-1)); } } cout<
#include
#include
#include
#include
#include
#include
using namespace std; int n, c, ans = 0x7fffffff, dis[52][52]; struct node { int d; int w; void set(int d1, int w1) { d = d1; w = w1; } } light[52]; void get_i(int &x) { char ch = getchar(); x = 0; while(!isdigit(ch)) ch = getchar(); while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } } int le, ri, tot, t, all_w; void dfs(int now, int step) { if(ans < tot) // 剪枝 return; if(step == n) { if(ans > tot) ans = tot; return; } if(le - 1 > 0) { le--; tot += all_w * dis[le][now]; all_w -= light[le].w; dfs(le, step+1); all_w += light[le].w; tot -= all_w * dis[le][now]; le++; } if(ri+1<=n) { ri++; tot += all_w * dis[ri][now]; all_w -= light[ri].w; dfs(ri, step+1); all_w += light[ri].w; tot -= all_w * dis[ri][now]; ri--; } } int main() { ios::sync_with_stdio(false); int i, j, d, w; get_i(n), get_i(c); for(i=1; i<=n; i++) { get_i(d), get_i(w); light[i].set(d, w); all_w += w; } all_w -= light[c].w; for(i=1; i