NOIP2000提高组 进制转换
题目描述
我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式。例如:123可表示为 1*10^2+2*10^1+3*10^0 这样的形式。与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值-1)为指数,以2为底数的幂之和的形式。一般说来,任何一个正整数R或一个负整数-R都可以被选来作为一个数制系统的基数。如果是以R或-R为基数,则需要用到的数码为 0,1,....R-1。例如,当R=7时,所需用到的数码是0,1,2,3,4,5和6,这与其是R或-R无关。如果作为基数的数绝对值超过10,则为了表示这些数码,通常使用英文字母来表示那些大于9的数码。例如对16进制数来说,用A表示10,用B表示11,用C表示12,用D表示13,用E表示14,用F表示15。
在负进制数中是用-R 作为基数,例如-15(十进制)相当于110001(-2进制),并且它可以被表示为2的幂级数的和数:
110001=1*(-2)^5+1*(-2)^4+0*(-2)^3+0*(-2)^2+0*(-2)^1 +1*(-2)^0
设计一个程序,读入一个十进制数和一个负进制数的基数, 并将此十进制数转换为此负进制下的数:-R∈{-2,-3,-4,...,-20}
输入输出格式
输入格式:
输入的每行有两个输入数据。第一个是十进制数N(-32768<=N<=32767); 第二个是负进制数的基数-R。
输出格式:
结果显示在屏幕上,相对于输入,应输出此负进制数及其基数,若此基数超过10,则参照16进制的方式处理。输入输出样例
输入样例1:
30000 -2输出样例1:
30000=11011010101110000(base-2)输入样例2:
-25000 -16输出样例2:
-25000=7FB8(base-16)解题分析:
可以模仿整数进制的做法。但当n为负数是,对r取余的结果k为负数,不符合要求,因此必须向后面的借一个r,将k变为k-r,同时将n的对r的取余值加1,即:k = n%r;
n = n/r;
if(k<0){
k -= r;
n++;
}
这里得到的k就是其中一个系数,其他程序略。
下面的程序采用回溯法,即对每一个系数的可能情况(0, 1, ..., abs(r)-1)进行枚举,如果计算结果与n相同,则得到结果。
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std; int n, r, x[20] = {0}, bits; char bit[]="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; int pow2(int n, int e){ int ans = 1, tmp; if(n==0) return 1; else if(n==1) return e; if(n%2){ tmp = pow2(n/2, e); return e*tmp*tmp; } else { tmp = pow2(n/2, e); return tmp*tmp; } } int max_len(){ int i = 0; while(1){ if(pow2(i, abs(r))> abs(n)) return i+1; i++; } } void dfs(int k, int m){ int i, j; if(m==n){ for(i=bits; i>=0; i--) if(x[i]!=0) break; cout<
<<'='; for(j=i; j>=0; j--) cout<
>n>>r; bits = max_len(); dfs(0, 0); return 0; }