题意:
有一列数字,从大的往小的拿使最大最小值相差最小,每次只能拿一个,最多拿K次。
思路:
首先依据题意,求最小的极值确定下来是二分。刚开始想的是二分极值或最小值,但是判断函数十分难写。后来参考网上的思路对最大值和最小值分别进行二分,找到最大的最小值和最小的最大值,然后求出最小极值。很好的解题思路!但是注意两次二分的取值范围:对于最小值我们在0~sum/N之间二分,也就是说最小值一定不超过平均值(不可能超过平均值);对于最大值我们在(sum+N-1)/N~INF之间二分,最大值一定大于平均值。
上面的这句话是错误的,第一遍的时候这里没有想清楚,但是现在能够理解了。
更正为:对于最大值我们在(sum+N-1)/N~INF之间二分,最大值大于等于平均值。
考虑一种临界情况是sum刚好为n的整数倍,这个时候最大值和最小值应该都等于平均值,所以最大值的下边界也一定要从平均值开始。
起初一直在想为什么不能用(sum+n)/n,就是在于上面这种情况,如果sum为n的整数倍&#x