动态规划——01背包问题

  先举个例子01背包问题具体例子:假设现有容量15kg的背包,另外有4个物品,分别为a1,a2,a3, a4。物品a1重量为3kg,价值为4;物品a2重量为4kg,价值为5;物品a3重量为5kg,价值为6, a4重6千克,价值为7。将哪些物品放入背包可使得背包中的总价值最大?

对于这样的问题,如果如上述所涉及的数据比较少的时候,我们通过列举就能算出来,例如,上边的例子的答案是:将a4和a3与a2放入背包中,这样总重量为6+5+4=15,总价值为5+6+7=18,这样总价值最大。但是如果上述给出的条件很多,此时我们光靠用眼睛看是绝对不行的,所以我们要用上动态规划的思想。

关于动态规划的思想是如何建立的,若初学者对动态规划还是很迷惑的,可以打开下面的文章链接。

 

 

    动态规划的基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

 

    由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

 

与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

 

我们以01背包为例子:

思路:先将原始问题一般化,欲求背包能够获得的总价值,即欲求前i个物体放入容量为m(kg)背包的最大价值c[i][m]——使用一个数组来存储最大价值。而前i个物体放入容量为m(kg)的背包,又可以转化成前(i-1)个物体放入背包的问题。下面使用数学表达式描述它们两者之间的具体关系。

表达式中各个符号的具体含义。

 

  w[i] : 第i个物体的重量;

 

  p[i] : 第i个物体的价值;

 

  c[i][m] :前i个物体放入容量为m的背包的最大价值;

 

  c[i-1][m] :前i-1个物体放入容量为m的背包的最大价值;

 

  c[i-1][m-w[i]] : 前i-1个物体放入容量为m-w[i]的背包的最大价值;

 

  由此可得:

 

      c[i][m]=max{c[i-1][m-w[i]]+pi , c[i-1][m]}(此时用到递归)

引用网上的一个图更能说明情况:

 

问题分析:令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数:

 

(1)   V(i,0)=V(0,j)=0

 

(2)   V(i,j)=V(i-1,j)  j<wi 

 

       V(i,j)=max{V(i-1,j) ,V(i-1,j-wi)+vi) }j>wi

 

(1)式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;第(2)个式子表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-wi 的背包中的价值加上第i个物品的价值vi; (b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。

 

 

【解法一】


解题分析:

    用普通的递归方法,对每个物品是否放入背包进行搜索

程序实现:

C++

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. #include <stdio.h>  
  2. #include <tchar.h>  
  3. #include <queue>  
  4. #include "iostream"  
  5.    
  6. using namespace std;  
  7.    
  8. const int N = 4;  
  9. const int W = 5;  
  10. int weight[N] = {2, 1, 3, 2};  
  11. int value[N] = {3, 2, 4, 2};  
  12. int solve(int i, int residue)   
  13. {  
  14. int result = 0;  
  15. if(i >= N)  
  16. return result;  
  17. if(weight[i] > residue)  
  18. result = solve(i+1, residue);  
  19. else   
  20. {  
  21. result = max(solve(i+1, residue), solve(i+1, residue-weight[i]) + value[i]);  
  22. }  
  23.    
  24. }  
  25.    
  26. int main() {  
  27. int result = solve(0, W);  
  28. cout << result << endl;  
  29. return 0;  
  30. }  

 

 

【解法

解题分析:

    用记录结果再利用的动态规划的方法,上面用递归的方法有很多重复的计算,效率不高。我们可以记录每一次的计算结果,下次要用时再直接去取,以提高效率

程序实现:

C++

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. #include <stdio.h>  
  2. #include <tchar.h>  
  3. #include <queue>  
  4. #include "iostream"  
  5.   
  6. using namespace std;  
  7.   
  8. const int N = 4;  
  9. const int W = 5;  
  10. int weight[N] = {2, 1, 3, 2};  
  11. int value[N] = {3, 2, 4, 2};  
  12. int record[N][W];  
  13. void init()  
  14. {  
  15.     for(int i = 0; i < N; i ++)  
  16.     {  
  17.         for(int j = 0; j < W; j ++)   
  18.         {  
  19.             record[i][j] = -1;  
  20.         }  
  21.     }  
  22. }  
  23.   
  24. int solve(int i, int residue)   
  25. {  
  26.     if(-1 != record[i][residue])  
  27.         return record[i][residue];  
  28.     int result = 0;  
  29.     if(i >= N)  
  30.         return result;  
  31.     if(weight[i] > residue)  
  32.     {  
  33.         record[i + 1][residue] = solve(i+1, residue);  
  34.           
  35.     }  
  36.     else   
  37.     {  
  38.         result = max(solve(i+1, residue), solve(i+1, residue-weight[i]) + value[i]);  
  39.     }  
  40.     return record[i + 1][residue] = result;  
  41. }  
  42.   
  43. int main() {  
  44.     init();  
  45.     int result = solve(0, W);  
  46.     cout << result << endl;  
  47.     return 0;  
  48. }  



问题描述:

    给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装
入背包中物品的总价值最大?
    对于一种物品,要么装入背包,要么不装。所以对于一种物品的装入状态可以取0和1.我们设物品i的装入状态为xi,xi∈ (0,1),此问题称为0-11背包问题。
     形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
\
       2、最优性原理:
     设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解:
\
     证明:使用反证法。若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而(y2,y3,…,yn)不是它的最优解。显然有
                                    ∑vizi > ∑viyi   (i=2,…,n)
     且                           w1y1+ ∑wizi<= c
     因此                       v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n) 
     说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的一个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,矛盾。
       3、递推关系:
    设所给0-1背包问题的子问题
      \
     的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式:
\
     注:(3.4.3)式此时背包容量为j,可选择物品为i。此时在对xi作出决策之后,问题处于两种状态之一:
    (1)背包剩余容量是j,没产生任何效益;
    (2)剩余容量j-wi,效益值增长了vi ;

 

 



这里做个备注吧,我在思考这个问题的时候遇到的困难。

int jMax=min(w[n]-1,c);找出w[n]-1和 c之间的较小者。因为当总重量小于当前物品的重量时候,不能放,
//所以这里挑选出哪几个格子不能放,在下面的for循环中就将其置零。
for(int j=0;j<=jMax;j++) m[n][j]=0;表示第n个物品不选 那么所以价值为0
for(int j=w[n];j<=c;j++) m[n][j]=v[n];//接着当总重量,大于等于w[n]的时候们可以放了,表示选择了第n个物品,所以价值为v[n]

for(int i=n-1;i>1;i--){
jMax=min(w[i]-1,c);
for(int j=0;j<=jMax;j++) m[i][j]=m[i+1][j];
for(int j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);
}

这里重点解释下,下面的两个for循环中的东西
第一个:
m(i,j)=m(i+1,j);
这是因为当前物品重量已经大于总重量,直接不放,所以当前i物品的最优解是 已经放了的 i+1物品的最优解

接着这句:

m(i,j)=max(m(i+1,j),m(i+1,j-w[i])+v[i]);

这时候,当前物品的重量还是小于总重量,但是我不确定是放好还是不放好。
第i+1个物品时的选择得到的最优解是已经知道的,这里从第n个物品开始放起,接着放第n-1,一直递减。直到第一个。
这时,动态规划,就是说哪个好我就选哪个,用max求出里面哪种选择更好。
解释下第一个
m(i+1,j)
这时,是可以放入,但是我不放,我现在的最优解就是上一个考虑i+1物品时的最优解
m(i+1,j-w[i])+v[i]
这时,是可以放入,我就放吧。那如果我现在肯定要放了,之前i+1的时候,背包总重量就是 j-w[i] 了,因为那时的容量会因为现在的决定受影响,
所以上次放的时候最优解是 m(i+1,j-w[i])  然后加上这次肯定要放的 v[i]  就是第 i 次的最优解。

最后用max选择一个大的。



“将前i件物品放入容量为C的背包中” 这个子问题,若只考虑第i件物品的策略(即是放或者不放),
那么可以讲背包问题转化为一个只牵扯前i-1件物品的问题。如果因为第i件物品的容量大于总容量
C,那么不放第i件物品,问题转化为“前i-1件物品放入容量为C的背包中”,即是 m(i,C)=m(i-1,C);

如果容量允许,那么放入第i件物品,但是我现在不知道是放了好还是不放好,所以又有两种情况
要我最后选择,选择一个大的。

1、如果可以放,但是我不放,得到:m(i,C)=m(i-1,C);

2、如果可以放,我放了,那倒着推一下,问题转化为:“前i-1件物品放入剩下的容量为 C-w[i] 的
背包中”,因为我已经确定放了,那么放第i-1件物品的时候容量就少了即是 C-w[i],最优值也改变,
这次的结果会对之前的产生影响,这时的最大价值是 m(i-1,C-w[i])+v[i] ,v[i]是放入物品i的价值


一个正着来的,一个倒着来的,你看哪个容易理解选哪个,我开始想不通这个,哈哈,其实都是一样。

代码来了:

    #include<stdio.h>  
    #include<stdlib.h>  
    #include<iostream>  
    #include<queue>  
    #include<climits>  
    #include<cstring>  
    using namespace std;  
    const int c = 10;             //背包的容量  
    const int w[] = {0,2,2,6,5,4};//物品的重量,其中0号位置不使用 。   
    const int v[] = {0,6,3,5,4,6};//物品对应的待加,0号位置置为空。  
    const int n = sizeof(w)/sizeof(w[0]) - 1 ; //n为物品的个数   
    int x[n+1];  
    void package0_1(int m[][11],const int w[],const int v[],const int n)//n代表物品的个数   
    {  
        //采用从底到顶的顺序来设置m[i][j]的值  
        //首先放w[n]  
        for(int j = 0; j <= c; j++)  
           if(j < w[n]) m[n][j] = 0;     //j小于w[n],所对应的值设为0,否则就为可以放置   
           else         m[n][j] = v[n];  
             
        //对剩下的n-1个物品进行放置。  
        int i;  
        for(i = n-1; i >= 1; i--)  
            for(int j = 0; j <= c; j++)  
               if(j < w[i])   
                            m[i][j] = m[i+1][j];//如果j < w[i]则,当前位置就不能放置,它等于上一个位置的值。  
                                                //否则,就比较到底是放置之后的值大,还是不放置的值大,选择其中较大者。              
               else         m[i][j] = m[i+1][j] > m[i+1][j-w[i]] + v[i]?   
                                      m[i+1][j] : m[i+1][j-w[i]] + v[i];    
    }  
    void answer(int m[][11],const int n)  
    {  
        int j = c;  
        int i;  
        for(i = 1; i <= n-1; i++)  
            if(m[i][j] == m[i+1][j]) x[i] = 0;  
            else                    {   
                                     x[i] = 1;  
                                     j = j - w[i];  
                                     }      
        x[n] = m[i][j] ? 1 : 0;   
    }  
    int main()  
    {  
     int m[6][11]={0};  
       
     package0_1(m,w,v,n);  
     for(int i = 0; i <= 5; i++)  
     {  
         for(int j = 0; j <= 10; j++)  
         printf("%2d ",m[i][j]);  
         cout << endl;   
     }   
     answer(m,n);  
     cout << "The best answer is:\n";  
     for(int i = 1; i <= 5; i++)  
     cout << x[i] << " ";  
     system("pause");  
     return 0;  
    }  




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值