LC 503. 下一个更大元素 II

本文探讨了两种高效算法:暴力法和单调栈法,解决给定循环数组中每个元素的下一个更大元素问题。暴力法时间复杂度为O(n^2),而单调栈法改进至O(n)。通过实例和代码解析,揭示了如何利用栈结构避免重复遍历,提升查找效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。数字 x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1。

样例
输入: [1,2,1]
输出: [2,-1,2]
解释: 第一个 1 的下一个更大的数是 2;
数字 2 找不到下一个更大的数; 
第二个 1 的下一个最大的数需要循环搜索,结果也是 2。

注意: 输入数组的长度不会超过 10000。


算法1

暴力

暴力能过我是真没想到(不推荐的做法)…

时间复杂度

O ( n 2 ) O(n^2) O(n2)

Java 代码
class Solution {
    public int[] nextGreaterElements(int[] nums) {
        int len = nums.length;
        int[] ans = new int [len];
        for (int i = 0; i < len; i ++ ) {
            int flag = 0;
            for (int j = (i + 1) % len; j != i; j = (j + 1) % len) {
                if (nums[j] > nums[i]) {
                    ans[i] = nums[j];
                    flag = 1;
                    break;
                }
            }
            if (flag == 0) ans[i] = -1;
        }
        return ans;
    }
}

算法2

单调栈
  • 维护一个正金字塔(正三角△)型的栈,从后向前遍历,得到当前位置的正确结果
  • 环链的问题,在原数组后再拼接一个原数组解决(见示意图)
  • 牢记单调栈模板
    在这里插入图片描述
时间复杂度

O ( n ) O(n) O(n)

Java 代码
class Solution {

    public int[] nextGreaterElements(int[] nums) {
        int len = nums.length;
        int[] ans = new int [len];
        int[] new_nums = new int [2 * len];
        int[] stk = new int [2 * len];
        int tt = 0;

        for (int i = 0; i < len; i ++ ) new_nums[i] = nums[i];
        for (int i = 0, j = len; i < len ; i ++ , j ++ ) new_nums[j] = nums[i];

        for (int i = 2 * len - 1; i >= 0; i -- ) { // 从2n - 1处开始计算是为了能得到n - 1处的正确结果
            int x = new_nums[i];
            while (tt > 0 && x >= stk[tt]) tt -- ;

            if (i < len) {
                if (tt > 0) ans[i] = stk[tt];
                else ans[i] = -1;
            }

            stk[ ++ tt] = x;
        }

        return ans;
    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水能zai舟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值