汉诺塔问题

汉诺塔问题

解决思路(分治)

以三根柱子,n个圆盘为例;
将一根柱子上的所有圆盘分成上n - 1堆和最下面一个,先设法将n - 1个移动到第二根柱子上(中转站),再将最大的一个盘子移动到目标柱子上;
随后再将第一根柱子作为中转站,将第二根柱子上的n - 1个圆盘设法移动到目标柱子上

递归求解方式

详解点击这里

class Solution {
    int ans = 0;
    
    void dfs(int n, List<Integer> A, List<Integer> B, List<Integer> C) {
        ans ++ ;
        if (n == 1) {
            C.add(A.remove(A.size() - 1));
            return ;
        }

        dfs(n - 1, A, C, B);
        C.add(A.remove(A.size() - 1));
        dfs(n - 1, B, A, C);
    }

    public int hanota(List<Integer> A, List<Integer> B, List<Integer> C) {
        
        dfs(A.size(), A, B, C);
        // System.out.println(ans);
        return ans;
    }
}

递推求解方式

详解点击这里

#include <bits/stdc++.h>

using namespace std;

const int INF = 0x3f;
const int N = 15;

int d[N], f[N];

int main() {
    
    d[1] = 1;
    for (int i = 2; i <= 12; i ++ ) {
        // 1: 最长的一根移动到第三根柱子上
        // d[i - 1] * 2: 其余n - 1部分的盘子,先移动到中转柱子上,再移动到第三根柱子上,两次移动所以*2
        d[i] = 1 + d[i - 1] * 2;
    }
    memset(f, INF, sizeof f);
    f[0] = 0;
    for (int i = 1; i <= 12; i ++ ) {
        for (int j = 0; j < i; j ++ ) {
            // 分成j和i - j两部分
            // 先将j个盘子移动到2或3其中作为中转盘子
            // 剩余的i - j个盘子和剩余的3个柱子构成d[]中我们求解的结果得出
            f[i] = min(f[i], f[j] * 2 + d[i - j]);
        }
    }
    for (int i = 1; i <= 12; i ++ ) cout << f[i] << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水能zai舟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值