一、图片灰度算法

灰度算法简介

在计算机领域中,灰度(Gray scale)数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以是任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑白两种颜色,灰度图像在黑色与白色之间还有许多级的颜色深度

一.opencv灰度实现

  • 读取时实现:
import cv2
# picture type 0:gray   1 color
img = cv2.imread("图片展示.jpg", 0)
cv2.imshow("image", img)
cv2.waitKey(0)

  • 实时转为灰度
import cv2
img1 = cv2.imread("image0.jpg", 1)
# 颜色空间转换的,将bgr转换为灰度图片
dst = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
cv2.imshow("dst", dst)
cv2.waitKey(0)

二.灰度算法手动实现

  • 灰度算法著名的心理学公式:

Gray = R0.299 + G0.587 + B*0.114

根据心理学公式产生python如下代码:

import cv2
import numpy as np
img = cv2.imread("image0.jpg", 1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
mode = imgInfo[2]
dst = np.zeros((height, width, 3), np.uint8)
for i in range(0, height):
    for j in range(0, width):
        (b, g, r) = img[i, j]
        b = int(b)
        g = int(g)
        r = int(r)
        gray = b*0.114 + g*0.587 + r*0.299
        dst[i, j] = np.uint8(gray)
cv2.imshow("dst", dst)
cv2.waitKey(0)

算法优化建议:b0.114 + g0.587 + r0.299 可先将小数1000,然后将加总的和除以1000,避免精度损失

  • 非心理学公式:
import cv2
import numpy as np
img = cv2.imread("image0.jpg", 1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
mode = imgInfo[2]
dst = np.zeros((height, width, 3), np.uint8)
for i in range(0, height):
    for j in range(0, width):
        (b, g, r) = img[i, j]
        gray = (int(b) + int(g) + int(r)) / 3 #(r+g+b)/3得到
        dst[i, j] = np.uint8(gray)
cv2.imshow("dst", dst)
cv2.waitKey(0)

博主开发的第三方CSDN客户端.体验很棒哦,快来体验下载吧

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页