命题逻辑复习

命题逻辑

定义

定义3-1 对事物作出确定判断的陈述句称为命题。

命题常元:当符号P表示一个确定命题时,该符号称为命题常元。
命题变元:当符号P表示任意一个命题时,该符号称为命题变元。
原子命题:原子命题是不能再细分的命题
复合命题:原子命题通过命题联结词构造的命题。
(命题联结词:非 合取 析取 蕴含 等价)

定义3-7

命题公式也称为合式公式、公式,递归方式定义如下:
(1)单个命题变元和命题常元是一个命题公式;
(2)P和Q是命题公式, ¬P、P∧Q、P∨Q、P→Q、P↔Q也是命题公式;
(3)有限次应用上述2条规则得到的符号串也是命题公式。

定义3-8

如果命题公式G中含有n个命题变元 P 1 、 P 2 ⋯ 、 P n P_1、P_2⋯、P_n P1P2Pn,称G为n元命题公式,可以表示为 G ( P 1 、 P 2 ⋯ 、 P n ) G(P_1、P_2⋯、P_n) G(P1P2Pn)
P 1 、 P 2 ⋯ 、 P n P_1、P_2⋯、P_n P1P2Pn分别指定相应的真值,称为对公式G的一种指派或解释。
若指定的一组值使得G真值为1,则称这组值为G的成真指派。
若使得G的真值为0,则称这组值为G的成假指派。

定义3-10

命题公式G,P_1、P_2…是G中的所有命题变元,那么:
(1)如果命题公式G在所有指派下真值为1,称公式G为永真式或重言式
(2)如果命题公式G在所有指派下真值为0,称公式G为永假式或矛盾式
(3)如果命题公式G在有些指派下真值为1,有些指派下真值为0,称公式G为可满足式

公式
  1. 双重否定律:¬¬G=G
  2. 幂等律:G=G∨G,G=G∧G
  3. 交换律:G∨H=H∨G,G∧H=H∧G
  4. 结合律:(G∨H)∨S = G∨(H∨S),(G∧H)∧S = G∧(H∧S)
  5. 分配律:G∧(H∨S)=(G∧H)∨(G∧S),G∨(H∧S)= (G∨H)∧(G∨S)
  6. 德摩根律:¬(G∧H)=¬G∨¬H,¬(G∨H)=¬G∧¬H
  7. 吸收律:G∧(G∨H)= G,G∨(G∧H)=G
  8. 零律:G∨1=1,G∧0=0
  9. 同一律:G∨0=G,G∧1=G
  10. 排中律:G∨¬G=1
  11. 矛盾律:G∧¬G=0
  12. 蕴涵等值式:G→H =¬G∨H
  13. 等价等值式:G↔H =(G→H)∧(H→G)
  14. 假言移位: G→H =¬H→¬G
  15. 归谬律: (G→H)∧(G→¬H) = ¬G

谓词逻辑

定义

定义4-1

原子命题中,真实存在的对象,称为个体。
(1)个体常元:表示特定的、具体的个体。通常用小写字母a、b、c等表示。也称为个体常项。
(2)个体变元:表示泛指的、不确定的个体。通常用小写字母x、y、z等表示。也可称为个体变量、个体变项。

定义4-2

个体的取值范围称为个体域或论域。通常用D表示,一般假定D非空。
有一个特殊的个体域,宇宙中所有对象的集合称为全总个体域,简称全域,它是默认的个体域。

定义4-3

描述个体性质或个体之间关系的词称为谓词。
谓词不是命题
谓词S(x),表示x有性质S,x是个体,性质S是泛指的,S(x)是谓词变项。
当S表示具体、特定的性质时,S(x)就是谓词常项。
没有个体变元的谓词,称为0元谓词。例如,F(a, b),G(a, b),F(a_1,a_2, ⋯,a_n)等都是0元谓词,如果F、G是谓词常项,这样的0元谓词就是命题。
谓词的个体是有顺序的,例如,用G表示“大于”关系,G(x, y)与G(y, x)有不同的含义。

定义4-4

表示个体常项、个体变元的数量关系的词称为量词,包括:全称量词∀和存在量词∃。

定义4-8

谓词公式,简称公式,定义如下:
(1)每个原子命题是谓词公式;
(2)若P、Q是公式,则¬P、P∧Q、P∨Q、P→Q、P↔Q都是公式;
(3)若P是公式,x是个体变元,∀xP、∃xP都是公式;
(4)有限次使用上述规则得到的表达式是公式。

定义4-9

谓词逻辑中,一个公式G的解释由下列部分组成:
(1)指定非空个体域D;
(2)对公式中的每个命题变元P,指派一个真值T或F;
(3)对公式中的常量、自由变元,指定为个体域D中的特定元素;
(4)对公式中的n元函数,指定为一个D^n到D的某个特定函数;
(5)对公式中的n元谓词,指定为D^n到{0,1}的某个特定谓词。

定义4-10

公式G,如果在所有解释下,真值都为真,称G为有效公式或永真公式;如果在所有解释下,真值都为假,称G为矛盾公式或永假公式;如果至少存在一种解释使其为真,称G为可满足式。

定义4-12

若公式G↔H是永真式(有效公式),则称公式G和H等值,或称G和H等价,记为G=H,若G→H是永真式,则称G逻辑蕴涵H,记为G⇒H。

定义4-13

如果公式G中的一切量词都位于该公式的最前端(不含否定词),且这些量词的辖域都延伸到公式的末端。其标准形式如下:
( Q 1 x 1 ) ( Q 2 x 2 ) ⋯ ( Q n x n ) M ( x 1 , x 2 , ⋯ , x n ) (Q_1x_1)(Q_2x_2)⋯(Q_nx_n)M(x_1,x_2,⋯,x_n) (Q1x1)(Q2x2)(Qnxn)M(x1,x2,,xn)
其中Q_i为量词∀或∃(i=1,⋯,n),M中不再有量词。则称G为前束范式。

公式

(1)量词否定等值式

(2)量词辖域的扩展与收缩等值式

(3)量词分配的等值式、蕴涵式

(4)多个量词的量化次序等值式、逻辑蕴涵等值式

(5)其他等值、蕴涵式
∃x P(x)= ∃yP(y),∀xP(x)=∀yP(y),∀xP(x) ⇒∃x P(x)

运算

前束范式的求解步骤:
(1)消去公式中的联结词“→”,“↔”(如果有的话);
(2)反复运用量词转换律、德摩根律和双重否定律,直到将所有的“¬”都内移到原子谓词公式的前端;
¬(∃x)A(x)⇔(∀x)¬A(x);¬(∀x)A(x)⇔(∃y)¬A(y) (量词转换律)
(3)使用改名规则,自由变元、约束变元在同一公式中仅以一种身份出现,使用谓词的等价公式将所有量词提到公式的最前端,并保证其辖域直到公式的末端。
(∃x)A(x)=(∃y)A(y);(∀x)A(x)=(∀y)A(y) (改名规则)
(∀x)A(x)∧(∀x)B(x)= (∀x)(A(x)∧B(x)) (量词分配律)
(∃x)A(x)∨(∃x)B(x)= (∃x)(A(x)∨B(x));
(∀x)A(x)∨(∀x)B(x)= (∀x)(∀y)(A(x)∨B(y));
(∃x)A(x)∧(∃x)B(x)= (∃x)(∃y)(A(x)∧B(y));
(∀x)A(x)∨G= (∀x)(A(x)∨G); (量词辖域的扩张律)
(∀x)A(x)∧G= (∀x)(A(x)∧G);
(∃x)A(x)∨G= (∃x)(A(x)∨G);
(∃x)A(x)∨G= (∃x)(A(x)∨G) .

谓词公式推理
  1. 全称特指规则US:∀xG(x) ⇒ G©
  2. 全称推广规则UG:G© ⇒ ∀x G(x)
  3. 存在特指规则ES:∃x G(x) ⇒ G©
  4. 存在推广规则EG:G©⇒∃xG(x)

注意:

ES规则要求G(x)中无自由变元,如果存在自由变元,应采用函数的形式表示。

例子

符号化下列命题。

  1. 凡人都呼吸。
  2. 有的人用左手写字。
  3. 不是所有的自然数都是偶数。

1.令M(x)表示x是人;F(x)表示x呼吸;符号化为:∀x(M(x)→F(x))
2.令M(x)表示x是人;G(x)表示x用左手写字;符号化为:∃x(M(x)∧G(x))
3.令N(x)表示x是自然数;E(x)表示x是偶数;符号化为:¬∀x(N(x)→E(x))或∃x(N(x)∧¬E(x))

例4.9 判断下列公式的类型
(1)P(a)→∃xP(x)
(2)¬(∀x P(x)→∃yQ(y))∧∃yQ(y)

永真式
永假式

例4.14 求¬((∀x)(∃y)P(a,x,y)→(∃x)(¬(∀y)Q(y,b)→R(x)))的前束范式。

例4.16 证明苏格拉底三段论:人是要死的,苏格拉底是人,所以苏格拉底是要死的。

采用全总个体域,M(x):x是人;D(x):x是要死的;s:苏格拉底(个体)。形式化前提和结论:∀x(M(x)→D(x))∧M(s) ⇒D(s)
(1)∀x(M(x)→D(x)) //p规则,引入前提
(2)M(s)→D(s) //US(1)
(3)M(s) //P规则
(4)D(s) //T(2)(3)

例4.17 ∀x(P(x)→Q(x)),∀xP(x) ⇒ ∀xQ(x)

证明:
(1)∀x(P(x)→Q(x)) //P规则
(2)P©→Q© //US(1)
(3)∀xP(x) //P规则
(4)P© //US(3)
(5)Q© //T(2)(4)
(6)∀xQ(x) //UG(5)

例4.20 所有自然数是有理数,有些实数是自然数,所以有些实数是有理数。

N(x):x是自然数;Q(x):x是有理数;R(x):x是实数。
形式化为:∀x(N(x)→Q(x)),∃x(R(x)∧N(x)) ⇒ ∃x (R(x)∧Q(x))
(1)∃x(R(x)∧N(x)) //p规则,引入前提
(2)R©∧N© //ES(1)
(3)R© //T(2)
(4)N© //T(2)
(5)∀x(N(x)→Q(x)) //P规则
(6)N©→Q© //US(5)
(7)Q© // T(4)(6)
(8)R©∧Q©) //T(3)(7)
(9)∃x (R(x)∧Q(x)) //EG(8)

例5.2.2 设
A 1 = ∃ x ∙ ( P ( x ) ∧ ( ∀ y ) ( D ( y ) → L ( x , y ) ) ) , A 2 = ∀ x ∙ ( P ( x ) → ( ∀ y ) ( Q ( y ) → ¬ L ( x , y ) ) ) A_1=∃x∙(P(x)∧(∀y)(D(y)→L(x,y))),A_2=∀x∙(P(x)→(∀y)(Q(y)→¬L(x,y))) A1=x(P(x)(y)(D(y)L(x,y)))A2=x(P(x)(y)(Q(y)¬L(x,y)))
B=∀x∙(D(y)→¬Q(x))
证明 A 1 , A 2 ⊢ B A_1,A_2⊢B A1,A2B.

建立A_1的子句集{P(f(y)),¬D(y)∨L(f(y),y)},
A_2的子句集{¬P(x)∨¬Q(z)∨¬L(x,z)}
¬B的子句集{D(u), Q(v)}
证明:
① P(f(y)) P
② Q(v) P
③ D(u) P
④ ¬P(x)∨¬Q(z)∨¬L(x,z) P
⑤¬D(y)∨L(f(y),y) P
⑥ ¬P(f(y))∨¬Q(v)∨¬L(f(y),v) ④置换{x/f(y)},{z/v}
⑦ ¬L(f(y),v) I_126
⑧ ¬L(f(y),y) ⑦置换{v/y}
⑨ ¬D(u) I_58且置换{y/u}
⑩ NIL I_39

例 有向图是一个二元组(V,E),其中,V是一个有限顶点集合、E是一个有限有向边集合。
定义如下谓词:对每个顶点v∈V,谓词vertex(v)为真;
对每条边e∈E,谓词edge(e)为真;
谓词first(x,e)和second(y,e)表示边e是从顶点x到顶点y;
谓词path(x,y)表示存在一条从 顶点x到顶点y的路径。下面是相关的规格:
顶点和边:

∀ x ⋅ ( v e r t e x ( x ) V e d g e ( x ) ) ; \forall\mathrm{x}\cdot(\mathrm{vertex(x)Vedge(x))}; x(vertex(x)Vedge(x));
∀ x ⋅ ¬ ( v e r t e x ( x ) ∧ e d g e ( x ) ) ; \forall\mathrm{x}\cdot\neg(\mathrm{vertex}(\mathrm{x})\wedge\mathrm{edge}(\mathrm{x})); x¬(vertex(x)edge(x));
∀ e ⋅ ( e d g e ( e ) → (   ∃ x ) (   ∃ y ) (   v e r t e x (   x ) ∧ v e r t e x (   y ) ∧ f i r s t (   x , e ) ∧ s e c o n d (   y , e ) ) ) ) \forall\mathrm{e}\cdot(\mathrm{edge}(\mathrm{e})\rightarrow(\mathrm{~\exists x})(\mathrm{~\exists y})(\mathrm{~vertex}(\mathrm{~x})\wedge\mathrm{vertex}(\mathrm{~y})\wedge\mathrm{first}(\mathrm{~x},\mathrm{e})\wedge\mathrm{second}(\mathrm{~y},\mathrm{e})))) e(edge(e)( ∃x)( ∃y)( vertex( x)vertex( y)first( x,e)second( y,e))))

路径:

∀ x ⋅ ∀ y ⋅ ∃ e ⋅ ( f i r s t ( x , e ) ∧ s e c o n d ( y , e ) → p a t h ( x , y ) ) \forall\mathrm{x}\cdot\forall\mathrm{y}\cdot\exists\mathrm{e}\cdot\left(\mathrm{first}(\mathrm{x},\mathrm{e})\wedge\mathrm{second}(\mathrm{y},\mathrm{e})\rightarrow\mathrm{path}(\mathrm{x},\mathrm{y})\right) xye(first(x,e)second(y,e)path(x,y))
∀ x ⋅ ∀ y ⋅ ( p a t h ( x , z ) ∧ p a t h ( z , y ) → p a t h ( x , y ) ) \forall\mathrm{x}\cdot\forall\mathrm{y}\cdot(\mathrm{path}(\mathrm{x},\mathrm{z})\land\mathrm{path}(\mathrm{z},\mathrm{y})\to\mathrm{path}(\mathrm{x},\mathrm{y})) xy(path(x,z)path(z,y)path(x,y))
∀ x ⋅ ∀ y ⋅ ( p a t h ( x , y ) → ∃ e 1 ⋅ f i r s t ( x , e 1 ) ∧ ∃ e 2 ⋅ s e c o n d ( y , e 2 ) ) \forall x\cdot\forall y\cdot\left(path(x,y)\to\exists e_1\cdot first(x,e_1)\land\exists e_2\cdot second(y,e_2)\right) xy(path(x,y)e1first(x,e1)e2second(y,e2))

考虑由下列前提给出的连通图:

vertex(a),vertex(b),vertex©,vertex(d);
e d g e ( e 1 ) , e d g e ( e 2 ) , e d g e ( e 3 ) ; \mathrm{edge}(\mathbf{e}_{1}),\mathrm{edge}(\mathbf{e}_{2}),\mathrm{edge}(\mathbf{e}_{3}); edge(e1),edge(e2),edge(e3);
first( a , e 1 ) , s e c o n d ( b , e 1 ) , f i r s t ( b , e 2 ) , s e c o n d ( c , e 2 ) , f i r s t ( b , e 3 ) , s e c o n d ( d , e 3 ) ,e_1),\mathrm{second}(\mathrm{b},\mathrm{e}_1),\mathrm{first}(\mathrm{b},e_2),\mathrm{second}(\mathrm{c},\mathrm{e}_2),\mathrm{first}(\mathrm{b},\mathrm{e}_3),\mathrm{second}(\mathrm{d},\mathrm{e}_3) ,e1),second(b,e1),first(b,e2),second(c,e2),first(b,e3),second(d,e3)

证明:①从顶点a出发到除a外的每个顶点都可达 ②从b出发到a不可达

  • 22
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值