【day09】LeetCode(力扣)每日一刷[1640. 能否连接形成数组 ][102. 二叉树的层序遍历 ][704. 二分查找 ]

CSDN话题挑战赛第2期
参赛话题:学习笔记

在这里插入图片描述

在这里插入图片描述


题目一、1640. 能否连接形成数组

原题链接:1640. 能否连接形成数组

题目描述:

给你一个整数数组 arr ,数组中的每个整数 互不相同 。另有一个由整数数组构成的数组 pieces,其中的整数也互不相同 。请你以 任意顺序 连接 pieces 中的数组以形成 arr 。但是,不允许 对每个数组 pieces[i]中的整数重新排序。
如果可以连接 pieces 中的数组形成 arr ,返回true;否则,返回 false
/
示例 1:
输入:arr = [15,88], pieces = [[88],[15]]
输出:true
解释:依次连接 [15] 和 [88]
/
示例 2:
输入:arr = [49,18,16], pieces = [[16,18,49]]
输出:false
解释:即便数字相符,也不能重新排列 pieces[0]
/
示例 3:
输入:arr = [91,4,64,78], pieces = [[78],[4,64],[91]]
输出:true
解释:依次连接 [91]、[4,64] 和 [78]

解题思路:
为了验证pieces元素,是否可以连接形成数组arr,我们可以用双列集合map来存放数组pieces中的数组首元素以及下标。
再遍历地比较两个数组的元素;
如果存在两个数组的元素不对应,直接返回false即可;
具体操作可以看代码以及详细的注释:

提交代码:

class Solution {
    public boolean canFormArray(int[] arr, int[][] pieces) {
        int len_arr = arr.length;      //记录arr数组长度
        int len_pieces = pieces.length;//记录pieces数组长度

        //创建双列集合map,存放 <pieces内每个数组的首元素,数组的下标>
        Map<Integer,Integer> map = new HashMap<>();

        //遍历pieces[][],将 <pieces内每个数组的首元素,数组的下标>存入集合
        for(int i = 0;i < len_pieces;++i){
            map.put(pieces[i][0],i);
        }

        //遍历arr数组
        for(int i = 0;i < len_arr;){
            //pieces中不存在与arr对应元素,无法对应,返回false
            if(!map.containsKey(arr[i])) return false;

            //当前arr[i]元素在pieces中对应下标记录为n
            int n = map.get(arr[i]);
            //获取此下标数组的长度
            int len = pieces[n].length;

            //遍历下标n位置上的数组
            for(int j = 0;j < len;++j){
                //如果存在不对应得元素,说明无法连接成功
                if(arr[i+j] != pieces[n][j])
                //无法对应即返回false
                return false;

            }
            //遍历完下标为n的数组,说明遍历了数组长度len次
            i += len;
        }
        return true;//全部对应,返回真
    }
}

提交结果:

在这里插入图片描述


题目二、102. 二叉树的层序遍历

原题链接:
102. 二叉树的层序遍历

题目描述:

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
在这里插入图片描述
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
/
示例 2:
输入:root = [1]
输出:[[1]]
/
示例 3:
输入:root = []
输出:[]

解题思路:
层序遍历,考验的是广度优先搜索,使用队列来实现;
将树的节点按照层次来处理,根节点独自为第一层。
将同一层的节点按顺序入队,出队时用集合存放起来,同时判断是否存在孩子,存在则左右孩子依次入队。
当同一层节点全部出队,集合便记录下来了本层的层序遍历节点顺序,同时下一层的节点也全部一次入队了。
重复上述操作,即可将整颗二叉树遍历完成。

提交代码:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> list = new ArrayList<>();
        if(root == null) return list;

        //创建队列,利用先进先出的特性,遍历二叉树
        Queue<TreeNode> que = new LinkedList<>();
        que.offer(root);//头节点入队
        while(!que.isEmpty()){
            //创建集合,存放同一层的节点
            List<Integer> level = new ArrayList<>();
            //记录当前层的节点数,另其一行写,循环中que.size()会变化,不能作为循环条件
            int size = que.size();
            //遍历当前层次的节点
            for(int i = 0;i < size;++i){
            //记录出队的节点,并存放在代表本层节点的集合中
            TreeNode curr = que.poll();
            level.add(curr.val);

            //将当前出队节点的左右孩子入队
            if(curr.left != null) que.offer(curr.left);
            if(curr.right != null) que.offer(curr.right);
            }

            list.add(level);//以层为单位,分别存放每一层的节点
            
        }
        return list;

    }
}

提交结果:

在这里插入图片描述


题目三、704. 二分查找

原题链接:704. 二分查找

题目描述:

给定一个 n 个元素有序的(升序)整型数组nums和一个目标值 target ,写一个函数搜索 nums 中的target,如果目标值存在返回下标,否则返回 -1
/
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
/
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1

解题思路:
这道题很简单,题目以及告诉你要怎么做了;
从数组的中间下标元素开始查找,若没找到,分为两种情况。
若中间元素小于指定元素,数组左边界缩减至中间元素的下一位 ;
若中间元素大于指定元素,数组右边界缩减至中间元素的上一位 ;
每次遍历,运算量就减半,直至找到指定的target值,否则返回-1

提交代码:

class Solution {
    public int search(int[] nums, int target) {
        int L = 0,R = nums.length-1,mid,num;
        while(L <= R){//数组左边界与有边界未错位时
            mid = L+((R-L) >> 1); //获取中间下标
            num = nums[mid];      //获取中间下标元素
            if(num == target){    //找到target直接返回
                return mid;
            }else if(nums[mid] < target){
                L = mid+1;       //中间元素较小,左边界缩减
            }else{               
                R = mid-1;       //中间元素较大,有边界缩减
            }
        }
        return -1;               //左右边界错位,代表不存在指定元素,返回-1
    }
}

提交结果:

在这里插入图片描述

贵在坚持:
在这里插入图片描述

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.29.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值