判定欧拉回路
描述
你学过一笔画问题么?其实一笔画问题又叫欧拉回路,是指在画的过程中,笔不离开纸,且图中每条边仅画一次,而且可以回到起点的一条回路。
蒜头君打算考考你,给你一个有向图,问是否存在欧拉回路?
输入
第 11 行输入两个正整数,分别是节点数 N(1 < N < 1000)N(1<N<1000) 和边数 M(1 < M < 100000)M(1<M<100000);
紧接着 MM 行对应 MM 条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从 11 到 NN 编号)。
输出
若存在欧拉回路则输出 11,否则输出 00。
输入样例 1
10 11
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 3
3 1
输出样例 1
1
这道题很明显就是一个有向图。于是,他便符合一下这几个特点:
- 一个有向图 存在欧拉路径当且仅当 是弱连通的有向图(将有向边全部看成无向边后该图是连 通图),且满足以下两个条件之一:
-
所有顶点的入度和出度相等;
-
有一个顶点的出度与入度之差为 ,一个顶点的出度与入度之差为 ,其余顶点的入度和出 度相等。
2.当有向图 包含两个入度和出度不相同的顶点且有欧拉路径时,欧拉