题解-判定欧拉回路

这是一道关于欧拉回路的问题,探讨了一笔画问题与有向图的欧拉路径和欧拉回路的性质。题目要求判断给定的有向图是否存在欧拉回路,并给出了输入和输出的样例。解决方案需要检查图的连通性及各顶点的入度和出度是否相等。
摘要由CSDN通过智能技术生成

判定欧拉回路
描述

你学过一笔画问题么?其实一笔画问题又叫欧拉回路,是指在画的过程中,笔不离开纸,且图中每条边仅画一次,而且可以回到起点的一条回路。

蒜头君打算考考你,给你一个有向图,问是否存在欧拉回路?

输入
第 11 行输入两个正整数,分别是节点数 N(1 < N < 1000)N(1<N<1000) 和边数 M(1 < M < 100000)M(1<M<100000);

紧接着 MM 行对应 MM 条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从 11 到 NN 编号)。

输出
若存在欧拉回路则输出 11,否则输出 00。

输入样例 1

10 11
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 3
3 1
输出样例 1
1
这道题很明显就是一个有向图。于是,他便符合一下这几个特点:

  1. 一个有向图 存在欧拉路径当且仅当 是弱连通的有向图(将有向边全部看成无向边后该图是连 通图),且满足以下两个条件之一:
  • 所有顶点的入度和出度相等;

  • 有一个顶点的出度与入度之差为 ,一个顶点的出度与入度之差为 ,其余顶点的入度和出 度相等。

    2.当有向图 包含两个入度和出度不相同的顶点且有欧拉路径时,欧拉

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值