【论文阅读笔记】用于二进制代码相似性检测的语义感知神经网络

该论文提出了一种新的语义感知神经网络框架,用于在不依赖源代码的情况下检测二进制代码的相似性。通过将二进制代码转换为语义和结构信息丰富的图,结合BERT进行预训练,以及使用CNN捕捉节点顺序,模型在四个数据集上的实验显示了优越性能,特别是在图的块包含和分类任务中。
摘要由CSDN通过智能技术生成

在这里插入图片描述

论文标题:Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection
原文链接:https://ojs.aaai.org/index.php/AAAI/article/view/5466
说明:在读研究生为方便记忆梳理学习,手敲论文笔记,概括论文的主要思想和内容。

背景

在这里插入图片描述

  1. 二进制代码相似性检测,其目的是在不访问源代码的情况下检测相似的二进制函数,是计算机安全的一项基本任务。
  2. 利用二进制代码的流程图来构建代码的语义的提取。
  3. 使用NLP模型提取二进制代码语义信息,tokens=word,块=句子。
  4. 本文贡献:
  • 提出通用框架学习CFG的图嵌入,可以学习语义信息,结构信息和顺序信息。
  • 语义感知建模使用BERT对带有掩码1语言模型任务和相邻节点预测的token和块的嵌入进行预训练。
  • 顺序感知建模中,节点顺序有用,在邻接矩阵上采用CNN模型提取CFG的节点顺序信息。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值