14、Web缓存与Atom格式:提升系统性能与数据交互的关键技术

Web缓存与Atom格式:提升系统性能与数据交互的关键技术

1. 服务器驱动失效的局限性

服务器驱动的缓存失效机制存在一定的局限性。它仅适用于服务器已知的缓存,并且只有在需要接收失效事件通知的缓存与服务保持连接时,才能保证强一致性。若因网络问题导致缓存与服务断开连接,使其错过一个或多个失效消息,整个分布式应用将至少在一段时间内处于不一致状态。

由此可见,服务器驱动的失效机制只能部分缓解将Web作为集成平台时出现的弱一致性问题。由于其通常不太符合Web友好性原则,目前,过期和验证机制是确保Web上服务与消费者之间最终一致性的最常用方法。

2. 缓存新鲜度的权衡

当确定资源的表示可以被缓存后,我们需要决定目标缓存以及可缓存表示的新鲜度生命周期。在确定表示的新鲜度生命周期时,我们必须在服务器控制和可扩展性之间进行权衡:
- 短过期值 :服务对其发布的表示保留相对较高程度的控制,但这会导致频繁的重新加载和重新验证,消耗网络资源并增加源服务器的负载。
- 长过期值 :可以节省带宽并减少到达源服务器的请求数量,但会增加缓存表示在其新鲜度生命周期内与服务器上资源状态不一致的可能性。

虽然能够使缓存表示失效会有所帮助,即我们可以为每个表示指定较长的新鲜度生命周期,并在资源更改时使缓存条目失效,但遗憾的是,Web并不支持通用的失效机制。不过,我们可以通过扩展表示的新鲜度生命周期,使表示尽可能可缓存。

3. 缓存通道技术

缓存通道是一种用于扩展缓存表示新鲜度生命周期的技术。不理解缓存通道协议的缓存会在表示过期时使其失效

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值