【S】O-11.旋转数组的最小数字

【S】O-11.旋转数组的最小数字

题目描述

把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的一个旋转,该数组的最小值为1
在这里插入图片描述

题解

可以忽略的Method

直接排序return最小…完全不看题作答但也可以通过,和直接min(numbers)一样好笑
在这里插入图片描述

!正经Method

参考链接:写的很好的题解
循环二分
排序数组的查找问题首先考虑使用 二分法 解决,其可将 遍历法 的 线性级别 时间复杂度降低至 对数级别 。
如下图所示,寻找旋转数组的最小元素即为寻找 右排序数组 的首个元素 nums[x] ,称 x为 旋转点 。
在这里插入图片描述

  1. 初始化
    声明 ii, jj 双指针分别指向 numsnums 数组左右两端;
  2. 循环二分
    设 m = (i + j) / 2为每次二分的中点( “/” 代表向下取整除法,因此恒有 i ≤m<j ),可分为以下三种情况:
    当nums[m]>nums[j] 时: m 一定在 左排序数组 中,即旋转点 x 一定在 [m +1,j] 闭区间内,因此执行 i = m + 1;
    当 nums[m] < nums[j] 时: m 一定在 右排序数组 中,即旋转点 x一定在[i,m] 闭区间内,因此执行 j = m;
    当 nums[m] =nums[j] 时: 无法判断 mm 在哪个排序数组中,即无法判断旋转点 x 在 [i,m] 还是 [m+1,j] 区间中。解决方案: 执行 j = j - 1缩小判断范围。
  3. 返回值:
    当 i =j 时跳出二分循环,并返回旋转点的值nums[i] 即可
    图解示例
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
class Solution:
    def minArray(self, numbers: List[int]) -> int:
        i,j=0,len(numbers)-1
        while(i!=j):
            m=(i+j)//2
            if(numbers[m]>numbers[j]):
                i=m+1
            elif(numbers[m]<numbers[j]):
                j=m
            else:
                j=j-1
        return numbers[i]
        

结果

在这里插入图片描述

–2020/12/16-一开始抖机灵通过的method憨憨本人–

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值