树的重心也叫树的质心。找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡。
思路:dfs深搜+回溯
poj3701 (有多个重心)
AC代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<string>
#include<set>
#include<map>
using namespace std;
#define LL long long
const int MOD=1e9+7;
const int inf=0x3f3f3f3f;
const LL inff=0x3f3f3f3f3f3f3f3f;
const LL MAX_N=10005;
const LL MAX_M=100005;
#define MEF(x) memset(x,-1,sizeof(x))
#define ME0(x) memset(x,0,sizeof(x))
#define MEI(x) memset(x,inf,sizeof(x))
struct Edge
{
int v,next;
}edge[100005];
int first[50005],cnt=0;
void init()
{
cnt=0;
MEF(first);
}
void add(int u,int v)
{
edge[cnt].v=v;
edge[cnt].next=first[u];
first[u]=cnt++;
}
int num[50005],al[50005],l,n,mint;//num[i]表示i为根,子树节点数的个数
//tamp 子树节点个数的最大值,mint tamp的最小值
void dfs(int u,int fa)
{
num[u]=1;
int tamp=-inf;
for(int i=first[u];i!=-1;i=edge[i].next)
{
int lv=edge[i].v;
if(lv==fa)
{
continue;
}
dfs(lv,u);
num[u]+=num[lv];
if(tamp<num[lv])//u的lv儿子节点的子节点个数(包括lv节点)
{
tamp=num[lv];
}
}
if(tamp<n-num[u])//n-num[i]表示i的父亲节点的节点数(除去以u为根的子节点)
{
tamp=n-num[u];
}
if(mint>tamp)
{
mint=tamp;
l=0;
al[l++]=u;
}
else if(tamp==mint)
{
al[l++]=u;
}
return ;
}
int main()
{
scanf("%d",&n);
init();
for(int n1=1,a,b;n1<=n-1;n1++)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
mint=inf;
l=0;
ME0(num);
dfs(1,-1);
sort(al,al+l);
for(int i=0;i<l;i++)
{
i==0?printf("%d",al[i]):printf(" %d",al[i]);
}
printf("\n");
return 0;
}