杭电1176免费馅饼-通俗易懂讲解(动态规划)

免费馅饼

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18793    Accepted Submission(s): 6283


Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:

为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
 

Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
 

Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。

 

Sample Input
  
  
6 5 1 4 1 6 1 7 2 7 2 8 3 0
 

Sample Output
4

<解题分析>

据题意,当我们第T秒站在x点的时候,我们便可以在T+1秒的时候接到x-1,x,x+1这三个点其中的一个点的馅饼。

假设我们第T秒站在了x点,那么直到结束时最多能接到多少个馅饼呢?将其记为

DP(T,x)。       

而将在T秒站在x点正接到的馅饼数记为

exactly(T,x)。                  

那么下一秒,即T+1秒就有可能站在x、x-1、 x+1这三个点之中的一个点,有方程:

DP[T,x]= exactly[T,x]+ MAX( DP(T+1,x),  DP[T+1,x-1],  DP[T+1,x+1])     (式1)

假设最后一个馅饼会在第END秒掉下,那么我们可知

DP(END,x)= exactly(END,x)                                    (式2)

我们从最后一秒看起,第一步知道了每一个点在EDN秒的exactly值,也就是DP值,下一步就可以求出每一个点在END-1秒的DP值,以此往前推算,最终可以求出所有点在第0秒的DP值,依题设中开始位置在5,那么DP(0,5)就是所求答案,即最多可能接到馅饼数。

我们把式1叫做状态转移方程,式2叫做初值表达式。

样例求解过程:

6

5 1

4 1

6 1

7 2

7 2

8 3

本例首先可知END=3和exactly值, 

exactly值

  X

T

0

1

2

3

4

5

6

7

8

9

3

0

0

0

0

0

0

0

0

1

0

2

0

0

0

0

0

0

0

2

0

0

1

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

接下来可依次求解各秒的DP值

  X

T

0

1

2

3

4

5

6

7

8

9

3

0

0

0

0

0

0

0

0

1

0

2

0

0

0

0

0

0

0

3

1

1

1

0

0

0

0

1

1

4

3

3

1

0

0

0

0

1

1

4

4

4

3

3

第三秒时,DP[3,8]=0,这一行的其它值都是0,

第二秒时,    DP[2,7]= exactly[2,7]+max(DP[2,6],DP[2,7],DP[2,8])=2+max(0,0,1)=2+1=3。

其它的值也都是这样根据式2计算出来,最后计算到第0秒就结束了。

AC代码:

#include<iostream>
const int MAX=100001;
int DP[MAX][12];//保存第 i秒 j 位置 最多还能接到的馅饼 
int Now[MAX][12];//保存第 i秒 j 位置落下的馅饼 
using namespace std;
int main()
{
int n,pos,time,i,Time_MAX,maxn;
while(scanf("%d",&n)&&n)
{
memset(DP,0,sizeof(DP));
memset(Now,0,sizeof(Now));
Time_MAX=0;
for(i=0;i<n;i++)
{
//cin>>pos>>time;
scanf("%d%d",&pos,&time);
Now[time][pos]+=1;
if(Time_MAX<time)
{
Time_MAX=time;
}
}
for(i=0;i<=10;i++)
{
DP[Time_MAX][i]=Now[Time_MAX][i];
}
for(time=Time_MAX-1;time>=0;time--)
{
for(pos=0;pos<=10;pos++)
{
maxn=0;
if(pos>=1)
maxn=DP[time+1][pos-1];
if(DP[time+1][pos]>maxn)
maxn=DP[time+1][pos];
if(pos<=9&&DP[time+1][pos+1]>maxn)
maxn=DP[time+1][pos+1];
DP[time][pos]=Now[time][pos]+maxn;
}
}
printf("%d\n",DP[0][5]);
//cout<<DP[0][5]<<endl;
}
return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值