HDU-1176-免费馅饼(动态规划)

免费馅饼

都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
在这里插入图片描述

为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。

Sample Input

6
5 1
4 1
6 1
7 2
7 2
8 3
0

Sample Output

4

代码实现:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[100100][20];
int main()
{
    int n,maxx,a,b;
    while(~scanf("%d",&n))	//题目提示说用scanf输入,用cin可能会超时
    {
        memset(dp,0,sizeof(dp));
        if(n==0)
        {
            break;
        }
        maxx=0;		//赋初值
        while(n--)		//我用for循环是错的,我也不知道为什么。。。
        {
            scanf("%d %d",&a,&b);
            dp[b][a]++;
            if(maxx<b)
            {
                maxx=b;
            }
        }
        for(int i=maxx; i>0; i--)		//倒着来
        {
            for(int j=0; j<=10; j++)
            {
                if(j==0)
                {
                    dp[i-1][j]+=max(dp[i][j],dp[i][j+1]);
                }
                else if(j==10)
                {
                    dp[i-1][j]+=max(dp[i][j],dp[i][j-1]);
                }
                else
                {
                    dp[i-1][j]+=max(dp[i][j],max(dp[i][j-1],dp[i][j+1]));
                }
            }
        }
        printf("%d\n",dp[0][5]);
    }
    return 0;
}

原题链接:
Virtual Judge
HDU-1176


在这里插入图片描述
WA了好多次终于过了。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值