命运
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6605 Accepted Submission(s): 2336
Problem Description
穿过幽谷意味着离大魔王lemon已经无限接近了!
可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个机关。要知道,不论何人,若在迷宫中被困1小时以上,则必死无疑!
可怜的yifenfei为了去救MM,义无返顾地跳进了迷宫。让我们一起帮帮执着的他吧!
命运大迷宫可以看成是一个两维的方格阵列,如下图所示:
yifenfei一开始在左上角,目的当然是到达右下角的大魔王所在地。迷宫的每一个格子都受到幸运女神眷恋或者痛苦魔王的诅咒,所以每个格子都对应一个值,走到那里便自动得到了对应的值。
现在规定yifenfei只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k>1。
为了能够最大把握的消灭魔王lemon,yifenfei希望能够在这个命运大迷宫中得到最大的幸运值。
可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个机关。要知道,不论何人,若在迷宫中被困1小时以上,则必死无疑!
可怜的yifenfei为了去救MM,义无返顾地跳进了迷宫。让我们一起帮帮执着的他吧!
命运大迷宫可以看成是一个两维的方格阵列,如下图所示:
yifenfei一开始在左上角,目的当然是到达右下角的大魔王所在地。迷宫的每一个格子都受到幸运女神眷恋或者痛苦魔王的诅咒,所以每个格子都对应一个值,走到那里便自动得到了对应的值。
现在规定yifenfei只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k>1。
为了能够最大把握的消灭魔王lemon,yifenfei希望能够在这个命运大迷宫中得到最大的幸运值。
Input
输入数据首先是一个整数C,表示测试数据的组数。
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,10<=m<=1000);
接着是n行数据,每行包含m个整数,表示n行m列的格子对应的幸运值K ( |k|<100 )。
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,10<=m<=1000);
接着是n行数据,每行包含m个整数,表示n行m列的格子对应的幸运值K ( |k|<100 )。
Output
请对应每组测试数据输出一个整数,表示yifenfei可以得到的最大幸运值。
Sample Input
1 3 8 9 10 10 10 10 -10 10 10 10 -11 -1 0 2 11 10 -20 -11 -11 10 11 2 10 -10 -10这道题其实是一道DP(动态规划)题目,这题刚开始一看一位又是一道搜索题,但是题目的条件限制是单向不可以回头而且还可以是跳跃前进,所以用动态规划来解决,其动态转移方程:DP[i][j](表示是从起点到(i,j)点的最大值),map[i][j]表示(i,j)该点的数值 方程为:DP[i][j]=Max(DP[i-1][j],DP[i][j-1])+map[i][j];和DP[i][j]=Max(DP[i][j],DP[i][j/k]+map[i][j])(这个方程下面代码上注有解释AC代码+解释:#include<iostream>//DP #include<cstring> #include<cstdio> #include<string> #include<algorithm> const int MAX=1001; const int maxn=-999999; int map[21][MAX]; int DP[21][MAX];//DP[i][j]表示从起点按规则走到(i,j)点的最大总值 int n,m; using namespace std; int Max(int x,int y) { return x>y?x:y; } int main() { int t,i,j; cin>>t; while(t--) { cin>>n>>m; for(i=1;i<=n;i++) { for(j=1;j<=m;j++) { cin>>map[i][j]; } } for(i=0;i<=n;i++) DP[i][0]=maxn;//边缘初始化 for(i=0;i<=m;i++) DP[0][i]=maxn;//边缘初始化 DP[0][1]=0;//注意初始化,始终保持DP[1][1]起点是map[1][1] DP[1][0]=0;// for(i=1;i<=n;i++) { for(j=1;j<=m;j++) { DP[i][j]=Max(DP[i-1][j],DP[i][j-1])+map[i][j];//开始走 int k=2; while(j/k>0)//这里是表示可以从哪个点跳跃到该点 { if(j%k==0)//如果可以跳跃 DP[i][j]=Max(DP[i][j],DP[i][j/k]+map[i][j]);//比较是跳跃到该点总值大还是一步一步走过来的总值大 k+=1; } } } cout<<DP[n][m]<<endl;//走到最后就求到了命运大迷宫中得到最大的幸运值 } return 0; }