Conda简介
- Conda的定义与核心功能(包管理与环境管理)
- Conda与Anaconda/Miniconda的关系
- 适用场景(数据科学、机器学习、多环境开发)
Conda环境管理
- 创建新环境:指定Python版本与名称
conda create -n myenv python=3.9
- 激活与退出环境
conda activate myenv conda deactivate
- 列出所有环境
conda env list
- 删除环境
conda env remove --name myenv
Conda包管理
- 安装包(指定版本或渠道)
conda install numpy=1.21 conda install -c conda-forge pandas
- 卸载包
conda remove numpy
- 更新包或环境
conda update numpy conda update --all
- 列出已安装包
conda list
- 搜索某个可用包
conda search tensorflow
环境配置与导出
- 导出环境配置(生成
environment.yml
)conda env create -f environment.yml
- 从文件创建环境
conda env create -f environment.yml
- 克隆现有环境
conda create --name myclone --clone myenv
实用技巧与故障处理
- 清理缓存与无用包
conda clean --all
- 解决依赖冲突(使用
--no-deps
或创建新环境) - Conda与Pip混合使用的注意事项
- 常见错误排查(如环境激活失败、渠道优先级问题)
进阶功能
- 配置镜像源加速下载
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- 多平台环境兼容性处理(
--no-builds
选项) - 使用
conda-build
构建自定义包
附:常见问题
- conda activate无效?
运行conda init初始化shell配置,或使用旧版命令(如source activate)。
- 包版本冲突?
尝试创建新环境,或使用conda install --force-reinstall强制重装。
- 恢复默认配置
删除~/.condarc文件(Linux/Mac)或C:\Users\<User>\.condarc(Windows)。