
人工智能
文章平均质量分 93
人工智能(Artificial Intelligence,AI)是一门涉及多个学科的交叉学科,旨在研究、开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统。目标是让机器能够胜任一些通常需要人类智能才能完成的复杂工作。在人工智能的发展中,机器学习技术发挥了重要作用。深度学习是机器学习的一种。
109702008
数字人-幺洞勾拐洞两洞洞八
展开
-
深入剖析多叉树、红黑树与 B + 树:数据结构的异同与应用场景
红黑树是一种自平衡的二叉查找树。每个节点包含一个键值、颜色属性(红色或黑色),以及指向左右子节点的指针。根节点是黑色。所有叶子节点(NIL节点)是黑色。如果一个节点是红色,那么它的两个子节点都是黑色。从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。B+树是一种平衡的多路查找树,是B树的一种变体。它的所有键值都存储在叶子节点上,内部节点只存储索引信息,用于导航到合适的子树。叶子节点通过指针相互连接形成一个链表,便于范围查询和顺序遍历。原创 2025-02-03 00:30:00 · 165 阅读 · 0 评论 -
AI大模型如何重塑软件开发流程?
AI 大模型通常指的是拥有数亿乃至数千亿参数的深度学习模型。这些模型通过海量数据的训练,具备了强大的数据处理和理解能力,可以胜任多种复杂任务。代表性的 AI 大模型包括 OpenAI 的 GPT-3,Google 的 BERT 和 T5 及支持多语言功能的多模态大模型。AI大模型正在重塑软件开发流程,为软件开发者、企业乃至整个产业链带来了前所未有的机遇与挑战。面对这一变革,我们需要积极拥抱新技术,加强学习与实践,以更好地适应并引领这场深刻的变革。原创 2024-11-05 00:15:00 · 1713 阅读 · 0 评论 -
如何看待AI技术的应用前景?
人工智能技术的应用前景是光明的,它将在医疗、企业、日常生活等多个领域带来革命性的变革。然而,我们也需要正视其中的挑战,通过政策引导、技术创新和社会协作,共同推动AI技术的健康发展。未来,随着AI技术的不断进步,我们有理由相信,它将为我们创造一个更加智能、高效和美好的世界。人工智能技术的快速发展,为我们带来了前所未有的机遇和挑战。只有深入理解AI的发展历程和现状,准确把握其应用前景和潜力,积极应对可能的负面影响,我们才能更好地利用这一技术,推动社会的持续进步和发展。原创 2024-10-23 03:15:00 · 1898 阅读 · 1 评论 -
如何看待诺贝尔物理学奖颁给了机器学习与神经网络?
2024年诺贝尔物理学奖的颁发,不仅是对机器学习和神经网络领域研究者们的认可,更是对这一领域在现代科学中重要地位的肯定。机器学习和神经网络的发展前景广阔,将在科学研究、应用领域和人工智能方面发挥越来越重要的作用。同时,这些技术的研究与传统物理学之间存在着密切的关系,相互影响和促进,共同推动了科学的进步。这一奖项的授予,无疑为机器学习和神经网络的发展开辟了新的篇章,也为未来的科学研究指明了方向。原创 2024-10-12 02:00:00 · 1749 阅读 · 0 评论 -
基于MindSpore的恶性皮肤肿瘤识别
本实验旨在使用MindSpore框架在包含4个类别的数据集上,进行模型微调以训练ResNet50模型,实现皮肤病识别模型;我们将利用MindSpore model_zoo中提供的ResNet50模型定义,通过昇思大模型平台进行模型的训练和优化;MindSpore框架:开源深度学习框架,支持端、边、云多种场景,旨在为用户提供全场景AI解决方案;ResNet50模型:深度残差网络,通过引入残差学习解决了深度网络训练中的梯度消失问题,是图像识别领域广泛使用的模型之一;昇思大模型平台。原创 2024-10-07 16:26:30 · 1077 阅读 · 0 评论 -
ResNet50中药炮制饮片质量判断
我们使用“中药炮制饮片”数据集,该数据集由成都中医药大学提供,共包含中药炮制饮片的 3 个品种,分别为:蒲黄、山楂、王不留行,每个品种又有着4种炮制状态:生品、不及适中、太过,每类包含 500 张图片共12类5000张图片,图片尺寸为 4K,图片格式为 jpg。主分支第一层网络以输入channel为256为例,首先通过数量为64,大小为的卷积核进行降维,然后通过Batch Normalization层,最后通过Relu激活函数层,其输出channel为64;当处理完数据后,就可以来进行网络的搭建了。原创 2024-10-06 08:05:56 · 902 阅读 · 0 评论 -
基于MindSpore实现CycleGAN壁画修复
CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。原创 2024-10-05 08:15:29 · 998 阅读 · 0 评论 -
CycleGAN图像风格迁移互换
CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。原创 2024-10-04 08:07:10 · 1013 阅读 · 0 评论 -
DCGAN生成漫画头像
在下面的教程中,我们将通过示例代码说明DCGAN网络如何设置网络、优化器、如何计算损失函数以及如何初始化模型权重。在本教程中,使用的共有70,171张动漫头像图片,图片大小均为96*96。原创 2024-10-03 16:31:57 · 1136 阅读 · 0 评论 -
Pix2Pix实现图像转换
Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。生成器和判别器。传统上,尽管此类任务的目标都是相同的从像素预测像素,但每项都是用单独的专用机器来处理的。原创 2024-10-03 11:37:50 · 1530 阅读 · 0 评论 -
自然语言处理实战项目
项目概述文本摘要是从较长的文本中自动生成简短摘要的过程。可以分为抽取式摘要和生成式摘要。步骤1. 数据获取:从新闻文章、研究论文等数据源获取长文本及其摘要数据集。2. 数据预处理:文本清洗、去掉HTML标签、特殊字符等。3. 特征提取:对于抽取式,计算句子的重要性;对于生成式,文本嵌入。4. 模型训练:- 抽取式:使用TextRank、TF-IDF等算法评估和选择重要句子。- 生成式:训练Seq2Seq模型或者Transformer模型(如BART、T5)。原创 2024-09-27 09:44:55 · 1195 阅读 · 0 评论 -
计算机视觉学习路线
计算机视觉(Computer Vision)是计算机科学的一个重要分支,旨在使计算机能够理解和解释视觉数据。以下是一个详细的计算机视觉学习路线,帮你系统地掌握这个领域所需的知识和技能。1. 基础数学和编程在深入学习计算机视觉之前,确保你有坚实的数学和编程基础。数学:- 线性代数:矩阵与向量、特征值与特征向量等。- 概率论与统计学:基本概率、概率分布,贝叶斯定理等。- 微积分:尤其是多变量微积分。- 优化算法:梯度下降法等。原创 2024-09-26 15:50:55 · 3418 阅读 · 3 评论 -
关于编译原理、电子电路、通信实验、算法数据结构等大学生课程实验的项目设计源码或报告
关于大学生课程实验的项目设计源码或报告,每个课程可能有所不同。原创 2024-09-26 15:42:18 · 1233 阅读 · 0 评论 -
机器学习和深度学习的区别
机器学习:是人工智能的一个分支领域,它通过计算机系统的学习和自动化推理,使计算机能够从数据中获取知识和经验,并利用这些知识和经验进行模式识别、预测和决策。机器学习起源于20世纪50年代的简单算法,如决策树和逻辑回归。深度学习:则是机器学习中的一个子领域,使用深度神经网络模型进行学习和预测。深度学习在21世纪初开始兴起,特别是随着计算能力的提高和大数据的普及。机器学习和深度学习在定义、模型复杂度、数据需求、计算资源需求、应用范围与场景以及学习方式与特点等方面存在显著的差异。原创 2024-09-21 11:20:57 · 2282 阅读 · 1 评论 -
图像生成大模型imagen
Imagen 是由谷歌研究团队开发的一种先进的图像生成大模型。它基于文本描述生成高质量的图像,是人工智能在生成视觉内容方面的一大突破。原创 2024-09-20 12:22:02 · 1287 阅读 · 2 评论 -
揭秘 AMD GPU 上 PyTorch Profiler 的性能洞察
PyTorch Profiler 是一个性能分析工具,使开发人员能够检查 PyTorch 模型训练和推理的各个方面。它允许用户收集和分析详细的分析信息,包括 GPU/CPU 利用率、内存使用情况以及模型内不同操作的执行时间。通过利用 PyTorch Profiler,开发人员可以获得关于其模型运行时行为的宝贵见解,并发现潜在的优化机会。使用 PyTorch Profiler 非常简单,只需几个步骤:1. 标注代码:要开始对 PyTorch 代码进行分析,您需要使用分析注释对其进行标注。原创 2024-09-08 11:41:05 · 1399 阅读 · 1 评论 -
地震模板代码 - 第三部分
在这最后的三篇博客文章中,我们介绍了计算地震模板的基本HIP实现,采用高阶有限差分法进行计算。使用与[有限差分拉普拉斯系列]()相同的性能指标,我们开发了近似有效内存带宽的方法,并将其与实际内存带宽进行比较。这些文章集中在以下优化策略上:1. 对齐内存:此优化使用填充内存分配,使得主维度是GPU缓存行大小的整数倍。2. 滑动窗口:此技术在寄存器中保留输入数组数据的局部体积,并完全使用这些寄存器计算z方向的模板。此“窗口”有助于消除内核在逐一处理xy平面时冗余的全局内存获取。原创 2024-09-02 05:08:44 · 1350 阅读 · 1 评论 -
地震模板代码 - 第二部分
发布于 2024年8月12日,作者为 [Justin Chang]() 和 [Ossian O'Reilly](在上一篇文章中,我们提到,z方向上的模板计算内核由于低有效带宽而表现不佳。这种低性能是由于大量数据需要移动到全局内存造成的。为了解决这一性能瓶颈,我们将考虑两种优化策略:一种是通过增加内存占用来提升性能,另一种是将压力从内存子系统转移到GPU的向量寄存器上。为了简化实验,所有实验都使用三维立方网格,尺寸,模板半径R=4。原创 2024-09-02 05:07:19 · 1067 阅读 · 0 评论 -
地震微分方程代码 - 第一部分
常见的离散化声波方程的方法是通过行方法分两步进行:1. 时间积分器在时间上是显式的,并使用二阶跃蛙中心差分离散项,而右侧在当前时间步评价。2. 空间部分通常使用高阶有限差分离散,通常是第八阶。稍加滥用符号,得到的时间离散化变为:在上述公式中,可以理解为且是第个时间步。原创 2024-09-01 04:14:57 · 886 阅读 · 1 评论 -
使用ROCm和AMD GPU进行机器学习基准测试:复现我们的MLPerf推理提交
衡量新技术的性能是自古以来的一种实验,常常引人入胜(例如,我们仍然用马力来比较新电动汽车电机的性能)。在迅速发展的机器学习(ML)领域,MLPerf在2018年5月2日由MLCommons成立,迅速成为衡量AI准确性、速度和效率的黄金标准。MLPerf为训练、高性能计算和推理性能提供了基准测试。行业中的公司使用MLPerf的提交结果来评估各种GPU和软件平台的性能,并根据这些结果做出技术采用决策。原创 2024-09-01 04:13:55 · 1263 阅读 · 0 评论 -
加速 PyTorch 模型:使用 ROCm 在 AMD GPU 上应用 torch.compile
PyTorch 2.0 引入了一个名为**的工具,可以极大地加速 PyTorch 代码和模型。通过将 PyTorch 代码转换为高度优化的内核,`torch.compile` 在现有代码库上进行最小化修改即可提供显著的性能提升。此功能允许精确优化单个函数、整个模块以及复杂的训练循环,提供了一个多功能且强大的工具来提高计算效率。在这篇博客中,我们将演示如何在 AMD GPU 上使用 ROCm 和加速各种实际模型。原创 2024-08-31 07:11:24 · 3022 阅读 · 0 评论 -
如何本地搭建Whisper语音识别模型
Whisper作为一个强大的语音识别工具,可以在本地环境中高效运行。从硬件配置到依赖安装,再到CUDA加速,以上指南涵盖了搭建Whisper语音识别模型的各个步骤。通过本地运行,您可以获得更高的数据隐私和更低的延迟,使其在各种应用场景中表现出色。要在本地搭建Whisper语音识别模型,可以按照以下步骤进行操作:1. 安装依赖:首先,确保你的计算机上已经安装了Python和相关依赖库。原创 2024-08-29 05:29:35 · 1081 阅读 · 1 评论 -
在AMD GPU上使用DBRX Instruct
'''在这方面,我们看到虽然它在总结文章的关键点上做得不错,但提供的具体例子(如微分方程和群论)实际上并不存在于原文中。这个例子表明DBRX会有一定的幻觉倾向。原创 2024-08-28 15:25:36 · 1390 阅读 · 0 评论 -
使用统计方法在AMD GPU上使用JAX Profiler可靠地比较大型生成AI模型中的算法性能
本文提供了一份详细的指南,介绍如何在JAX实现的生成AI模型中测量和比较各种算法的性能。利用JAX Profiler和统计分析,本文展示了如何可靠地评估关键步骤并比较AMD GPU上算法的性能。在剖析应用或模型性能时应应用稳健的统计分析和测试,以确保随机噪声的影响不会损害我们结论的有效性。原创 2024-08-28 15:00:11 · 1734 阅读 · 0 评论 -
在 AMD GPUs 上进行图分析使用 Gunrock
广度优先搜索(BFS)是一种在树或图数据结构中搜索满足给定属性的节点的算法。1. 它从根节点开始,探索所有相邻的节点。2. 然后,它选择最近的节点,并探索所有未探索的节点。3. 它通常使用队列数据结构来跟踪要访问的节点。4. 它还标记每个节点是已探索还是未探索,以避免重复访问相同的节点。5. BFS可以找到从根节点到图中任何其他节点的最短路径。图 2:展示在图的不同层次上进行 BFS 迭代的可视化。原创 2024-08-27 21:12:11 · 1104 阅读 · 2 评论 -
使用在AMD GPU上运行的ROCm进行大语言模型的自然语言处理任务
早期的文本摘要方法集中于从文本中提取关键词或关键短语,并使用人工定义的规则将它们组装成摘要。LLM(大规模语言模型)改变了摘要生成的方式,因为它能够捕捉到长文本序列中词汇之间的关系。有许多专门针对这些任务训练的著名LLM。本节展示了其中的两个。在这篇博客中,你学习了如何使用运行在AMD GPU上的ROCm实现多个流行的大语言模型,以轻松执行各种自然语言处理任务,如文本生成、摘要和数学问题解决。如果你有兴趣提高这些模型的性能,请查看关于微调Llama2和Starcoder的ROCm博客。原创 2024-08-26 07:41:11 · 1647 阅读 · 1 评论 -
使用 AMD GPUs 进行基于 Transformers 的时间序列预测
Transformer 架构在时间序列预测中的应用已成为替代传统统计模型(如自回归积分滑动平均(ARIMA)或指数平滑(ETS))的一个重要选择。Transformers 能够捕捉复杂的时间依赖关系,并且能够处理不同类型的输入数据,如文本、音频、图像和时间序列数据。基于 Transformer 的模型是一种神经网络架构,设计用于处理序列数据和捕捉长程依赖性。Transformers 最早在论文中被提出。原创 2024-08-26 06:32:23 · 1011 阅读 · 0 评论 -
Transformer模型:Postion Embedding实现
Transformer模型中的位置编码(Position Embedding)是一个关键组件,它帮助模型理解序列中单词的位置信息。在 Transformer 模型中,位置编码(Position Embedding)的作用是为模型提供输入序列中各个位置的信息,因为 Transformer 本身并不像循环神经网络(RNN)那样天然地包含位置顺序信息。Transformer模型中的Position Embedding是用于将序列中的每个单词的位置信息嵌入到词嵌入向量中,以便模型能够理解单词之间的相对位置关系。原创 2024-08-22 08:41:40 · 377 阅读 · 0 评论 -
如何利用AI创作高质量的文章
总之,利用 AI 创作高质量文章需要明确写作目标和主题,进行充分的调研,选择合适的工具,与 AI 互动创作,加入个人观点和创意,以及进行校对和审核。可以添加、删除和调整文章的段落、句子和词汇,确保文章逻辑清晰、流畅,并符合你的写作风格和目标受众的需求。5. 语法和语言规范:生成模型可能会在语法和语言使用方面存在一些问题,因此在使用模型生成的文章时,需要进行语法和语言的修正。6. 人类校对和编辑:尽管模型可以生成高质量的文章,但最终的质量和风格还是需要人类的校对和编辑。初次生成的内容可能不是完美的。原创 2024-08-21 06:50:56 · 1471 阅读 · 0 评论 -
优化RoBERTa:在AMD上使用混合精度进行微调
在这篇博客中,我们将探讨如何微调鲁棒优化的BERT预训练方法([RoBERTa]())大型语言模型,重点在于PyTorch的混合精度功能。具体来说,我们将利用AMD GPU进行混合精度微调,以在不显著影响精度的情况下加快模型训练过程。RoBERTa是Facebook AI开发的双向编码器表示转换模型([BERT]())的高级变体。它通过修改预训练中的关键超参数(如移除下一个句子预测机制和使用更大的小批量大小进行训练)来增强BERT。在广泛的自然语言处理(NLP)任务中,该模型表现出优越的性能。原创 2024-08-19 22:10:49 · 915 阅读 · 1 评论 -
在AMD GPU上进行Grok-1模型的推理
xAI公司在2023年11月发布了Grok-1模型,允许任何人使用、实验和基于它构建。Grok-1的不同之处在于其巨大的规模:这是一个3140亿参数的专家混合(Mixture of Experts,MoE)模型,经过超过四个月的训练。一些关键技术细节包括:- 专家混合(MoE)架构,每个token激活2个专家。- 64层。- 48个注意力头(attention heads)。- 最大序列长度(上下文窗口)为8192个token。- 嵌入大小为6144。原创 2024-08-18 21:03:26 · 1351 阅读 · 1 评论 -
AI编程工具合集
GitHub Copilot 是由GitHub和OpenAI合作开发的人工智能编程助手,它使用机器学习模型来提供代码建议和自动完成功能。原创 2024-08-16 16:48:23 · 1731 阅读 · 2 评论 -
AI作画提示词(Prompts)工程:技巧与最佳实践
在开始创作提示词之前,了解您所使用的模型的训练数据、擅长的风格和局限性是至关重要的。记住,与AI的互动是一个学习和适应的过程,不断实验和调整将帮助你更好地掌握如何与AI合作,创作出令人惊叹的艺术作品1。AI作画提示词(Prompts)工程是一种应用人工智能技术进行创作的方法,通过给AI提供一些关键词或描述,让AI生成与之相关的艺术作品。明确的创作目标将为提示词的设计提供清晰的方向。AI作画提示词(Prompts)工程是一个涉及精细设计和优化的过程,旨在通过有效的提示词引导AI模型生成符合预期的艺术作品。原创 2024-08-16 09:50:24 · 1682 阅读 · 1 评论 -
心灵哲学(Philosophy of Mind)
定义:心灵哲学是对心灵的本性、精神事件、精神功能、精神性质和认知,以及它们和物理身体的关系的本性(这被称为“心身问题”)的哲学性研究。研究对象:主要包括心理事件、心理功能、心理性质、意识以及心灵与肉体的关系等。原创 2024-08-07 08:41:47 · 1338 阅读 · 1 评论 -
美学(希腊语:αισθητική;英语:Aesthetic)
定义:美学(希腊语:αισθητική;英语:Aesthetic)是研究人与世界审美关系的一门学科。审美活动是人的一种以意象世界为对象的人生体验活动,是人类的一种精神文化活动。研究对象美本身:部分学者认为美学的研究对象是美本身,即探讨所有美的事物所共同具有的那个美本身,以及使一切美的事物之所以美的根本原因。艺术:另一种观点认为美学的研究对象是艺术,美学即艺术的哲学。这一观点在西方美学史上得到了广泛认同。审美经验和审美心理。原创 2024-08-07 08:40:17 · 2438 阅读 · 0 评论 -
哲学“φιλοσοφία”(philosophia)
哲学(Philosophy)在广义上是指系统化、理论化的世界观,是世界观的理论形态,也是自然知识、社会知识和思维知识的概括与总结。它既是一门科学,又是一种社会意识形态。在网络流行语中,哲学则指标题与内容差异巨大的恶搞视频,这些视频通常会引发观看者如“我是谁”、“我在看什么”、“我为什么要看这个啊”等哲学思考。原创 2024-08-06 09:49:11 · 1598 阅读 · 1 评论 -
274471是素数吗?
对于较小的数字,可以通过简单的试除法进行判断,但对于较大的数字,则需要更高效的算法,比如Miller-Rabin素性测试。为了确定它是否是素数,我们需要继续试除更大的素数,直到达到它的平方根(大约是524,因为524^2 = 274576,略大于274471)。对于274471这个数,我们可以检查从2开始到它的平方根之间的所有数,看是否有能整除它的数。如果不能,则它是素数。但是,在这个特定的情况下,我们可以先排除一些明显的非素数情况,比如偶数(除了2以外)和能被3整除的数(即各位数字之和能被3整除的数)。原创 2024-08-05 07:25:16 · 1280 阅读 · 0 评论 -
ubuntu系统AMD w7900下运行OpenDevin
中的配置,使得 Vite 开发服务器监听所有网络接口(0.0.0.0)。可以通过网络访问服务,而不仅仅局限于。修改后,当重新启动 Vite 开发服务器时,它会监听所有接口,使得其他设备可以通过 frontend\ 访问它。中的1. Requirements。修改 frontend/原创 2024-08-03 13:51:44 · 352 阅读 · 0 评论 -
昇思25天学习打卡营第2天|张量 Tensor
张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 𝑛𝑛 维空间内,有 𝑛𝑟𝑛𝑟 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。𝑟𝑟 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。张量是一种特殊的数据结构,与数组和矩阵非常相似。张量()是MindSpore网络运算中的基本数据结构,本教程主要介绍张量和稀疏张量的属性及用法。原创 2024-06-20 09:25:27 · 666 阅读 · 0 评论 -
超详细的linux-conda环境安装教程
通过以上步骤,你应该已经成功在Linux系统上安装并配置了Conda。现在你可以开始使用Conda来管理你的Python环境和包了。希望这个教程对你有所帮助!如果你有任何问题,请随时提问。原创 2024-08-02 10:09:44 · 407 阅读 · 1 评论