给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。
示例:
输入:nums = [-1,2,1,-4], target = 1
输出:2
解释:与 target 最接近的和是 2 (-1 + 2 + 1 = 2) 。
提示:
3 <= nums.length <= 10^3
-10^3 <= nums[i] <= 10^3
-10^4 <= target <= 10^4
看上去跟回溯很类似,但是超时了,因为回溯的时间复杂度是o(N!)
void updateSum(const vector<int>& res, const int target, int& sum)
{
int res_sum = 0;
for (int i = 0; i < 3; i++)
{
res_sum += res[i];
}
if (abs(res_sum - target) < abs(sum - target))
{
sum = res_sum;
}
}
void threeSumClosestImpl(const vector<int>& nums, vector<int>& res, int& sum, const int target, vector<int>& used)
{
if (res.size() == 3)
{
updateSum(res, target, sum);
return;
}
for (int i = 0; i < nums.size(); i++)
{
if (used[i] == 0)
{
res.push_back(nums[i]);
used[i] = 1;
threeSumClosestImpl(nums, res, sum, target, used);
res.pop_back();
used[i] = 0;
}
}
}
// https://leetcode-cn.com/problems/3sum-closest/
//16. 最接近的三数之和。 按照全排列的方式去解决,N!肯定要超时
int threeSumClosest(vector<int>& nums, int target) {
vector<int> res;
int sum = 999999;
vector<int> used(nums.size() + 1, 0);
threeSumClosestImpl(nums, res, sum, target, used);
return sum;
}
暴力枚举,虽然通过了,但是效率太低,垫底
int threeSumClosest(vector<int>& nums, int target) {
int curSum = nums[0] + nums[1] + nums[2];
std::sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); i++)
{
for (int j = i + 1; j < nums.size(); j++)
{
for (int k = j + 1; k < nums.size(); k++)
{
if (abs(curSum - target) > abs((nums[i] + nums[j] + nums[k]) - target))
{
curSum = nums[i] + nums[j] + nums[k];
}
}
}
}
return curSum;
}
正常的解法:
可以参考 三个数的和
(https://leetcode-cn.com/problems/3sum/) 那道题目。
先将数组排序。
先固定一个数i
,剩下两个数分别为left
和right
,初始时left指向i+1,right指向数组的最后一个元素。
t = nums[i] + nums[left] + nums[right]
当t > target时,right左移,当t < target时,left右移,两个指针最后逼夹,最后会找到一个
t - nums[i] = nums[left] + nums[right]
的一个最接近的值,( t - nums[i] )在此层循环里是个定值。
所以两层循环,时间复杂度O(n2)平方
// 排序后,使用两个指针来找
int threeSumClosest3(vector<int>& nums, int target) {
std::sort(nums.begin(), nums.end());
int curSum = nums[0] + nums[1] + nums[2];
int left, right;
for (int i = 0; i < nums.size()-2; i++) // 最后两个数要留出来余量,left和right和i不应该相同
{
left = i + 1;
right = nums.size() - 1;
while (left < right)
{
int t = nums[left] + nums[right] + nums[i];
if (abs(curSum - target) > abs(t - target))
{
curSum = t;
}
if (t > target)
{
right--;
}
if (t < target )
{
left++;
}
if (t == target) // 防止死循环
{
return t;
}
}
}
return curSum;
}